

Fachbeiträge des LfU

Heft Nr. 151

Pflanzenschutzmittel in der Umwelt

Erhebung zu Wirkstoffmengen von Pflanzenschutzmitteln im Land Brandenburg

Impressum:

Fachbeiträge des Landesamtes für Umwelt, Heft 151

Herausgeber:

Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg

Kontakt:

Landesamt für Umwelt, Referat T14 Kontakt: rudolf.voegel@lfu.brandenburg.de

Bericht der Arbeitsgemeinschaft Krieger/Neumeister vom 30. November 2015 zum Auftrag S3-VG15-073

Erhebung der 2014 in den Verkehr gebrachten PSM-Wirkstoffe im Land Brandenburg für den Bericht

Pflanzenschutzmittel in der Umwelt

Erhebung von Pflanzenschutzmittel-Wirkstoffmengen im Land Brandenburg für das Jahr 2014 und ein Vergleich zu den Recherchen von 1998/99, 2001, 2003 und 2009

IfN – Ingenieurbüro für Nachhaltigkeit Dipl. Ing. agr. Alfons-E. Krieger (MA) Finkenschlag 24

Tel.: 03378/8838030 (Krieger) E-Mail: ae.krieger@gmx.de

und

Dipl. Ing. (FH) & MSc. Lars Neumeister Pestizidexperte

Berliner Str. 13 17291 Fürstenwerder

14974 Ludwigsfelde

Tel: 039859/63008 (Neumeister)

E-Mail: lars.neumeister@pestizidexperte.de

Beteiligte Institutionen und Personen

Auftraggeber:

Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg

Auftragnehmer:

Arbeitsgemeinschaft Krieger/Neumeister

Bearbeitung: Datensammlung und verarbeitung:

Alfons-E. Krieger (Ersterfassung und Datenverarbeitung)

Lars Neumeister (Datenverarbeitung)

Recherche, Auswertung und Bericht:

Alfons-E. Krieger Lars Neumeister

Danksagung

Die Autoren danken den zahlreichen Anlagenbetreibern und verantwortlichen Mitarbeitern der Pflanzenschutzmittellager für die Datenbereitstellung und freundliche Zusammenarbeit. Für die Bereitstellung von Informationen und sachdienlichen Hinweisen wird auch den Mitarbeitern des Pflanzenschutzdienstes beim Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuordnung (LELF) gedankt.

Inhaltsverzeichnis

1	Einle	itung und Zielstellung	6
2	Allge	meine landwirtschaftliche Situation und Anwendung von PSM in Deutschland	8
	2.1	Anwendung von Pflanzenschutzmitteln in Deutschland	9
	2.1.1	Landwirtschaft	10
	2.1.2		11
	2.1.3		11
	2.1.4		11
	2.2	Entwicklungen in der PSM-Gesetzgebung seit der letzten Erhebung 2009	
	2.3	Landwirtschaftliche Situation in Brandenburg	
	2.3.1	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15
	2.3.2	Kontrollen beim Pflanzenschutz	16
3	Erge	bnisse der Pflanzenschutzmittel-Erhebung 2014	16
	3.1	Vorbemerkungen	16
	3.2	Datenverarbeitung / Methodik	17
	3.3	Pflanzenschutzmittelwirkstoff-Tonnagen im Land Brandenburg im Jahr 2014	17
	3.4	Herbizide	22
	3.5	Insektizide	24
	3.6	Fungizide	26
	3.7	Wachstumsregulatoren	27
	3.8	Sonstige PSM-Wirkstoffe	28
4	Verg	leich der von den Herstellern gemeldeten PSM-Verkaufsmengen für Deutschland mit in	
		denburgischen Lagern erfassten Mengen	
	4.1	Vergleich der Wirkstoff-Anzahl	29
	4.2	Vergleich der Wirkstoff-Verkaufsmengen	29
5	Zusa	mmenfassung	32
6	Quel	lenverzeichnis	34
7	Anlager	l	36

Abbildungsverzeichnis

Abb. 1: Entwicklung der Pflanzenschutzmittelfunde in oberflächennahen Grundwassermessstellen der BRD von 1990 – 2008 (Quelle: BMU/UBA 2010)	7
Abb. 2: Jährlicher Inlandabsatz von Pflanzenschutzmittel in Deutschland (ohne inerte Gase für den Vorratsschutz), Quelle: BVL (2015a)	10
Abb. 3: Das DB-Konzept Vegetationsmanagement an Bahnstrecken (Quelle: DB 2015)	12
Abb. 4. Elemente des bestehenden Ordnungsrechts im Pflanzenschutz (aus NAP 2013)	15
Abb. 5: Vergleich der von Hauptanbaukulturen (Ackerland) zwischen Brandenburg und BR Deutschland (eigene Darstellung nach Statistisches Bundesamt 2015 und Statistik Brandenburg)	15
Abb. 6: 2014 erfasste Verkaufsmengen der einzelnen PSM-Wirkstoffgruppen in Brandenburg	18
Abb. 7: Absatz der einzelnen Wirkstoffgruppen an der Gesamtmenge der erfassten Wirkstoffe	18
Abb. 8: Vergleich der "Top-Wirkstoffe" 2014 zu 2009 in den Erhebungen in Brandenburg	20
Abb. 9: Anteile der 20 meistverkauften PSM-Wirkstoffe am Gesamtumsatz in Brandenburg für 2009 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009 (Datenbankauszug)	21
Abb. 10: Anteile der 20 meistverkauften PSM-Wirkstoffe am Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009 (Datenbankauszug)	
Abb. 11: Darstellung der Anteile der Topwirkstoffe in ihren Wirkstoffbereichen im Jahr 2009	22
Abb. 12: Darstellung der Anteile der Topwirkstoffe in ilhren Wirkstoffbereichen im Jahr 2014	22
Abb. 13: Anteile der 15 meistverkauften Herbizid-Wirkstoffe am Herbizid-Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009	23
Abb. 15: Anteile der 9 meistverkauften Insektizid-Wirkstoffe am Insektizid-Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009	25
Abb. 14: Top 15 Insektizide der Jahre 2014, 2009, 2003 – Anteile am Wirkbereich nach Chemikaliengruppe	26
Abb. 16: Anteile der 11 meistverkauften Fungizid-Wirkstoffe am Fungizid-Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009	27
Abb. 17: Anteile der meistverkauften Wachstumsregulatoren-Wirkstoffe am Wachstumsregulatoren- Gesamtumsatz in Brandenburg für 2014 u. deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009	28
Abb. 18: Entwicklung des Inlandsabsatzes von Wirkstoffen und -gruppen in Pflanzenschutzmitteln in Deutschland (Quelle: BVL 2015a)	30
Abb. 19: Vergleich der Anteile der Wirkbereiche an Wirkstoffabsatz Deutschland – Brandenburg 2014	31

1 Einleitung und Zielstellung

Pflanzenschutzmittel (PSM) wirken vielfältig auf Tiere, Pflanzen und ökosystemare Prozesse. Im von Untersuchungsprogrammen werden sie im Land Brandenburg Umweltkompartimenten Wasser (Oberflächen- und Grundwasser), Boden und Luft bestimmt. Zur Festlegung von Parameterlisten innerhalb der Umweltüberwachungsprogramme sind Erhebungen von Wirkstoffmengen für Expositionsabschätzungen und zur Vorbereitung von Analysenplanungen Ausbreitungsverhalten und Rückstandsproblematik Das die Pflanzenschutzmittelwirkstoffe kann mit negativen Folgen für die Umwelt verbunden sein. Kenntnis zu Anwendungsumfang und Praxiseinsatz ist daher wichtig für eine sachkundige Beratung und ein gezielteres Stoffmonitoring.

Mit der Grundwasserrichtlinie der EU-Wasserrahmenrichtlinie (WRRL) wurden im Dezember 2006 für das Grundwasser Qualitätsnormen für PSM (als Einzelstoff und als Summe) festgelegt. Oberflächennahe Grundwasserkörper (GWK), die entsprechend der WRRL von Relevanz und somit zu überwachen sind, stehen häufig im Austausch mit oberirdischen Gewässern. Mit dem Nationalen Aktionsplan Pflanzenschutz (NAP), 2013 durch die Bundesregierung verabschiedet, sollen u.a. die risikomindernde Anwendung und die Einsatzminderung von Pflanzenschutzmitteln im Einklang mit europäischen Anforderungen (Umsetzung der Pflanzenschutzrahmenrichtlinie der EU) erreicht werden.

Beim der Überwachung des chemischen Zustandes von GWK nach WRRL wird zwischen einer überblicksweisen und einer operativen Beobachtung unterschieden. PSM-Untersuchungen spielen sowohl im überblicksweisen (Realisierung überwiegend durch das Landeslabor Berlin-Brandenburg) als auch im operativen Monitoring in den GWK mit schlechtem Zustand eine wichtige Rolle.

Nach Aussage des Umweltbundesamtes (UBA) gibt es einen rückläufigen Trend bei der Grundwasserbelastung mit älteren Pestizidwirkstoffen, deren Altlasten allmählich abgebaut werden. So sind in der Vergangenheit häufig genutzte Herbizidwirkstoffe wie Atrazin seit vielen Jahren verboten und folglich sind Funde dieser Wirkstoffe und Abbauprodukte rückläufig (siehe Abb. 1).

"Funde von Wirkstoffen und Abbauprodukten aktuell zugelassener Pflanzenschutzmittel treten hingegen seit Jahren in vergleichbarer Häufigkeit auf. Auch hinsichtlich des Eintrags in Oberflächengewässer weisen Untersuchungen immer wieder auf Belastungen hin, die in der Vorhersage von Umweltbelastungen in den Zulassungsverfahren so nicht erwartet wurden."

In Oberflächengewässern der Uckermark wurden 2011 gehäuft Pflanzenschutzmitteleinträge festgestellt. Durch das Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuordnung (LELF) wurden in den Folgejahren insbesondere die abflusslosen Gewässer innerhalb der Ackerflächen beprobt und dabei oft Maisherbizide und auch sehr häufig der Wirkstoff Glyphosat beziehungsweise dessen Abbauprodukt AMPA nachgewiesen. Durch Beratungshinweise, Schulung der Landwirte und Erarbeitung eines praxisnahen Leitfadens für Handlungsempfehlungen wurde reagiert. Eine Reduzierung der teilweise kritischen Konzentrationen an Pflanzenschutzmitteln in den letzten Jahren konnte bei Nachbeprobungen festgestellt werden.²

6

¹ Quelle: https://www.umweltbundesamt.de/daten/chemikalien-in-der-umwelt/belastung-der-umwelt-durch-schadstoffe (Stand: 30.12.2016)

² Quelle: http://lelf.brandenburg.de/cms/detail.php/bb1.c.349548.de (Stand: 30.12.2016)

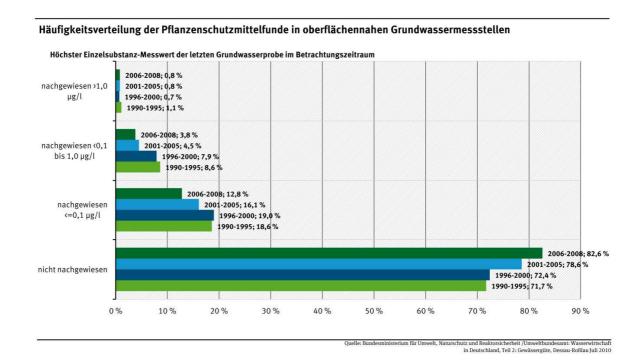


Abb. 1: Entwicklung der Pflanzenschutzmittelfunde in oberflächennahen Grundwassermessstellen der BRD von 1990 – 2008 (Quelle: BMU/UBA 2010)

Die vorliegende Erhebung für das Jahr 2014 knüpft an die Erfassungen von PSM-Wirkstoffmengen der Jahre 1998/99, 2001, 2003 und 2009 an. Bei der Vielzahl von zugelassenen und eingesetzten PSM-Wirkstoffen können so effektiver Beobachtungs- und Untersuchungsprioritäten gesetzt werden. Mit der Erfassung für das Jahr 2014 können Rückschlüsse zu Trends, Umfang und ökologischen Risiken des Einsatzes von PSM in Brandenburg gezogen werden. Die Umweltrelevanz der Stoffe kann damit besser berücksichtigt werden. Sie stellt einen wichtigen Beitrag zu einer gezielteren Wirkstoff-Analytik dar und dient gegebenenfalls auch zur Kosteneinsparungen im Rahmen der Umweltüberwachungsprogramme.

Bei der Vielzahl der in Brandenburg in den Verkehr gebrachten PSM-Wirkstoffe ist es nicht möglich, jeden Einzelnen im Umweltmonitoring analytisch zu erfassen. Deshalb erfolgt vorab eine Auswahl der wichtigsten Stoffe. Als Vorbereitung für eine effektive Analysenplanung werden dafür Erhebungen zu den Verkaufsmengen der einzelnen Mittel aus den verschiedenen Lägern in Brandenburg durchgeführt. Da die Angaben der PSM-Lager auf freiwilliger Basis erfolgen und sich nicht alle Lager an der Erhebung beteiligten, ist die Erhebung zwar wie die vorherigen Erhebungen lückenhaft, gibt aber trotzdem wertvolle Hinweise auf die gegenwärtige Anwendungspraxis der in Brandenburg Pflanzenschutzmittel. Hintergrund der nicht vollständigen Erfassung Abfragelücken (keine Bereitschaft angefragter Vertriebsfirmen bzw. unvollständige und zu späte Meldung. überregional, teilweise Herstellern einkaufende Großbetriebe. direkt bei landesübergreifende Betriebsstrukturen, Internethandel u.a.m.).

Diese Erhebung führt die Erfassungen der Jahre 1998/99 (LUA 2001), 2001 (LUA 2003), 2003 (LUA 2005) und 2009 (LUGV 2012) fort.

Die regelmäßige Durchführung und Auswertung der Erhebungen ermöglicht nicht nur eine effektivere Analysenplanung für das Umweltmonitoring, auch können so Trends in den landwirtschaftlichen

Anbauverfahren und -methoden erkannt werden und die Wirksamkeit von neuen gesetzlichen Bestimmungen beobachtet werden.

2 Allgemeine landwirtschaftliche Situation und Anwendung von PSM in Deutschland

Nach § 2, Absatz 9 des Pflanzenschutzgesetzes sind Pflanzenschutzmittel "Stoffe, die dazu bestimmt sind,

- a) Pflanzen oder lebende Teile von Pflanzen und Pflanzenerzeugnisse vor Schadorganismen zu schützen.
- b) Pflanzen oder lebende Teile von Pflanzen und Pflanzenerzeugnisse vor Tieren, Pflanzen oder Mikroorganismen zu schützen, die nicht Schadorganismen sind,
- c) die Lebensvorgänge von Pflanzen zu beeinflussen, ohne ihrer Ernährung zu dienen (Wachstumsregler/Wachstumsregulatoren; engl.: plant grow regulator (PGR)),
- d) das Keimen von lebenden Teilen von Pflanzen und Pflanzenerzeugnissen zu hemmen, ..."

Es handelt sich dabei um chemische oder biologische Produkte, die Pflanzen oder Pflanzenerzeugnisse vor einer Schädigung durch Tiere (zum Beispiel Insekten oder Nagetiere) oder Krankheiten wie Pilzbefall oder Bakteriosen schützen sollen. Herbizide, die der Bekämpfung von Pflanzen wie unerwünschten Ackerbegleitkräutern dienen, zählen ebenfalls dazu. Weiterhin werden Wachstumsregulatoren zu den Pflanzenschutzmitteln gerechnet, mit denen die Wuchshöhe von Pflanzenbeständen beeinflusst wird. Anstatt Pflanzenschutzmittel wird häufig auch der Begriff Pestizide verwendet, neben den Pflanzenschutzmitteln gehören dazu auch Biozide, wobei der Zweck der Anwendung die Begrifflichkeit definiert. Eine genaue Beschreibung wird in Kapitel 1, Artikel 2 (Anwendungsbereich) der Verordnung (EG) Nr. 1107/2009 des Europäischen Parlamentes und der Rates vom 21. Oktober 2009 über das Inverkehrbringen von Pflanzenschutzmitteln und zur Aufhebung der Richtlinien 79/117/EWG und 91/414/EWG des Rates und in der Biozidverordnung (EU) Nr. 528/2012 gegeben.

Pflanzenschutzmittel enthalten einen oder mehrere Wirkstoffe sowie weitere Beistoffe (Stoffe, die einen positiven Effekt auf die Herstellung, Lagerung oder Anwendung haben sollen). In Deutschland waren im Jahre 2014 276 Wirkstoffe (seit 2014 wurden die Safener³ und Synergisten ⁴ wieder in die Statistik aufgenommen, diese waren in den vorhergehenden Recherchen nicht enthalten) in 776 Mitteln zugelassen (BVL 2015a). Sie werden als Produkt in unterschiedlicher Form, zum Beispiel als Spritzmittel, zur Saatgutbehandlung oder als Granulat eingesetzt. Pflanzenschutzmittel können sich in vielfältiger Weise auf Mensch, Tier und Pflanze sowie im Naturhaushalt auswirken, sie können Boden und Wasser belasten und die biologische Vielfalt beeinträchtigen. Um diese Risiken zu minimieren, gibt es in Deutschland verschiedene Umweltauflagen und Anwendungsbestimmungen sowie Maßnahmen zur Reduzierung des Einsatzes von Pflanzenschutzmitteln, aber auch Programme für Kontrolluntersuchungen von Wasser und Boden, die durch die einzelnen Bundesländer durchgeführt werden.

³ Safener: Stoff, der einem Pflanzenschutzmittel beigefügt wird, um die phytotoxische Wirkung der Zubereitung auf bestimmte Pflanzen zu unterdrücken oder zu verringern.

⁴ Synergist: Stoff, der keine oder nur eine schwache Wirkung auf Schadorganismen aufweist, aber die Wirkung des Wirkstoffs in einem Pflanzenschutzmittel verstärkt.

Quellen: http://www.bvl.bund.de/DE/Service/Glossar/Functions/glossar.html?nn=1401288&lv2=1401760&lv3=1400180 (Stand: 30.12.2016)

http://www.bvl.bund.de/DE/Service/Glossar/Functions/glossar.html?nn=1401288&lv2=5410666&lv3=1400182 (Stand: 30.12.2016)

Daten über den Absatz von Pflanzenschutzmitteln erlauben nur begrenzte Aussagen über Risiken. Entscheidend für eine Bewertung des Pflanzenschutzmitteleinsatzes aus der Sicht des Umweltschutzes sind neben den ausgebrachten Wirkstoffmengen die Wirkungsintensität oder Wirkungsäquivalente.

Geringe Aufwandmengen und leichte Abbaubarkeit verringern das Risiko dass Pflanzenschutzmittel ins Grundwasser gelangen. Andererseits können moderne hochwirksame Pflanzenschutzmittel aus ökotoxikologischer Sicht trotz geringerer Dosierung das gleiche Gefährdungspotenzial wie ältere Mittel in hoher Dosierung aufweisen (UBA 2011). So werden die relativ neuen Insektizide aus der Gruppe der Neonicotinoide für einen europaweiten Zusammenbruch der Arthropodenfauna mit weiteren Konsequenzen für die Vogelfauna verantwortlich gemacht (van Lexmond et al. 2014). Hallmann et al. (2014) berechneten, dass schon eine Menge von 20 Nanogramm Imidacloprid pro Liter in Oberflächengewässer zu einer jährlichen Reduktion der Vogelpopulationen in den Niederlanden von 3,5 % führt. Eine Untersuchung von Wirbellosen in deutschen und französischen Flüssen wiesen zum Teil sehr starke Verluste der Artenvielfalt durch Pestizide nach und die Wissenschaftler schlußfolgerten, dass die gegenwärtige ökotoxikologische Risikobewertung nicht ausreicht, um die Biodiversität zu schützen (Beketov et al. 2013).

2.1 Anwendung von Pflanzenschutzmitteln in Deutschland

In der Bundesrepublik Deutschland wurden im Jahre 2014 106.155 t Pflanzenschutzmittel-Zubereitungen (ohne 11.588 t inerte Gase für den Vorratsschutz und incl. 5.690 t an PSM die im ökologischen Landbau einsetzbar sind) abgegeben. Insgesamt waren davon rund 46 % Herbizide, 28 % Fungizide, Bakterizide und Virizide, 4 % Insektizide, Akarizide, Pheromone, 5 % Wachstumsregler incl. Keimhemmungsmittel und 17 % sonstige Mittel mit 10 % Anteil inerte Gase für den Vorratschutz, 4 % Molluskizide und 1% Rodentizide, Wildabwehrmittel, Mittel zur Veredelung und zum Wundverschluss sowie Bodenentseuchungsmittel und Nematizide verkauft worden (BVL 2015a).

Der jährliche Inlandsabsatz von Pflanzenschutzmittelwirkstoffmengen (ohne inerte Gase für den Vorratsschutz) bewegte sich in den letzten Jahren zwischen ca. 26.000 und 35.000 t. Der seit etwa 2001 zu beobachtende leichte Aufwärtstrend bei Herbiziden und Fungiziden war von 2008 zu 2009 kurzzeitig umgekehrt. Seit 2009 liegt der Herbizidabsatz wieder auf dem Niveau von 2008, der Verkauf an Fungiziden und sonstigen Mittel ist angestiegen. 2014 lag der Inlandsabsatz an Wirkstoffen ohne inerte Gase mit rund 34.500 t⁵ auf dem Niveau von 2008 (siehe Abb. 2).

Das mengenmäßig bedeutendste Einsatzgebiet für Pflanzenschutzmittel ist mit großem Abstand die Landwirtschaft. Der nichtgewerbliche Anwendungsbereich in Haus und Garten kann aber lokal auch von Bedeutung sein.

Der Einsatz von Herbiziden auf Nichtkulturflächen ist mengenmäßig ebenfalls vergleichsweise gering. Einen hohen Anteil hat in diesem Bereich der Einsatz auf Gleisanlagen.

⁵ Quelle: BVL (2015a)

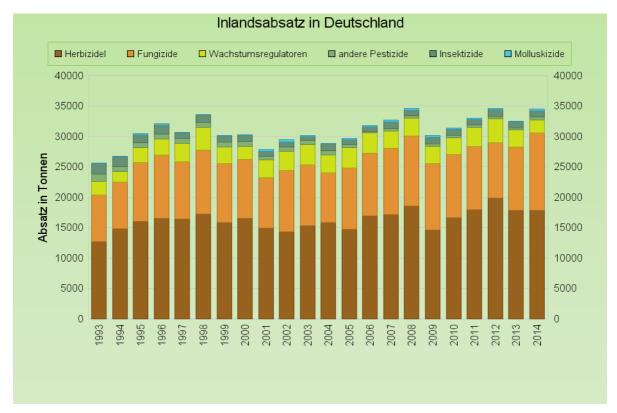


Abb. 2: Jährlicher Inlandabsatz von Pflanzenschutzmittel in Deutschland (ohne inerte Gase für den Vorratsschutz), Quelle: BVL (2015a)

2.1.1 Landwirtschaft

Von den 35,7 Mio. ha Gesamtfläche Deutschlands waren im Jahre 2014 16,7248 Mio. ha landwirtschaftlich genutzte Fläche, 11,869 Mio. ha Ackerland, 4,6507 Mio. ha Dauergrünland, 202.900 ha Dauerkulturen, 2100 ha Haus- und Nutzgärten und 10,8162 Mio. ha Wald.⁶

Die landwirtschaftlich genutzte Fläche wurde zu 71 % als Acker genutzt. Auf knapp 6.460.600 ha, also auf 54,4 % der Ackerfläche wurden 2014 Getreide (inklusive Körner- und CCM-Mais⁷) angebaut, 24 % dienten dem Feldfutteranbau. Ölfrüchte (überwiegend Raps und Sonnenblumen) nahmen 12,3 %, Hackfrüchte (Kartoffeln und Zuckerrüben) 5,2 % der Fläche und Hülsenfrüchte lediglich 0,78 % der Ackerfläche ein (Statistisches Bundesamt 2015).

1,009 Mio. ha⁸, also 6 % der landwirtschaftlichen Nutzfläche der Bundesrepublik (Stand: 2013) wurden ökologisch bewirtschaftet. Mit Ausnahme speziell zugelassener Stoffe⁹ werden diese Flächen weder mit Herbiziden noch mit anderen synthetisch hergestellten Pflanzenschutzmitteln behandelt.

Der Pflanzenschutzmitteleinsatz hängt neben den Kulturarten auch von den Witterungsbedingungen des jeweiligen Anbaujahres ab.

https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFischerei/Flaechennutzung/Tabellen/Bodenflaeche.html (Stand: 30.12.2016)

⁶Quelle:

Corn-Cob-Mix (CCM): der gesamte Maiskolben (mit Spindel) wird geerntet (meistens siliert und für die Schweinemast verwendet)

⁸ Quelle:

⁹ Quelle: http://www.bvl.bund.de/SharedDocs/Downloads/04 Pflanzenschutzmittel/psm_oekoliste-DE.pdf (Stand: 30.12.2016)

Im Rahmen des Nationalen Aktionsplanes zur nachhaltigen Anwendung von Pflanzenschutzmitteln (NAP) wird seit 2007 die Intensität der Anwendung von Pflanzenschutzmitteln (Behandlungsindex) auf einzelnen Feldern bzw. Kulturen auf der Basis eines Netzes von Vergleichsbetrieben ermittelt und eine fachliche Auswertung unter Zuhilfenahme von Hintergrundinformationen insbesondere zu den jahresspezifischen Bedingungen vorgenommen. ¹⁰

2.1.2 Forstwirtschaft

Der Einsatz von Pflanzenschutzmitteln (Insektizide, Herbizide, Rodentizide, Repellents) im Wald ist, verglichen mit der Ausbringung von Pflanzenschutzmitteln auf landwirtschaftlich genutzten Flächen, eher gering. Die zunehmenden Witterungsextreme, infolge des Klimawandels, fördern die Komplexerkrankungen der Bäume, begünstigen das Auftreten wärmeliebender Insekten und invasiver Arten (z.B. Asiatischer Laubholzbockkäfer) und können zukünftig die aktuelle Waldschutzsituation verschärfen. Vermehrte Störungen durch Massenvermehrungen von Schadorganismen oder großflächige Sturmschäden stellen eine besondere Herausforderung für die Forstwirtschaft dar.

2.1.3 Haus und Garten

Seit 2012 wird vom Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) der Inlandsabsatz an Pflanzenschutzmitteln und Wirkstoffen für den landwirtschaftlichen und den privaten Bereich getrennt erhoben. Damit wird der Anteil der von Freizeitgärtnern (nicht-berufliche Verwender) erworbenen Mengen statistisch erfasst. Der Absatz von Pflanzenschutzmitteln an nicht-berufliche Verwender macht immerhin 5,4 % der verkauften PSM-Zubereitungen aus. Insbesondere Molluskizide (20 %) sowie Insektizide, Akarizide und Pheromone (22 %) wurden im überdurchschnittlich hohen Anteil an nicht-berufliche Verwender abgegeben (BVL 2015a). Dabei haben private Haus- und Nutzgärten an der gesamten landwirtschaftlich genutzten Fläche nur einen Anteil von weniger als 0,02 %.

Der Umsatz der PSM für nichtberufliche Verwender ist von 2013 auf 2014 nach zwei schwächeren Jahren um 16 % gestiegen und damit wieder annähernd auf dem Niveau des Jahres 2011. Bei den Herbiziden war wie bereits im Vorjahr ein leichter Rückgang zu verzeichnen. An zweiter Stelle beim Umsatz im Haus- und Gartenbereich liegen die Insektizide. Der Umsatz hat sich um rund 14 Prozent gegenüber 2013 erhöht und entspricht wieder dem Niveau des Jahres 2012 (IVA 2015).

2.1.4 Gleisanlagen

E

Für die Sicherheit des Zugverkehrs ist es erforderlich, die Gleisanlagen von Pflanzen freizuhalten. Am einfachsten geht das mit Totalherbiziden. Alternativen, wie mechanische oder thermische Verfahren, sind uneffektiv und zudem zu zeitaufwändig, um einen reibungslosen Bahnbetrieb zu gewährleisten, so dass die Deutsche Bahn (DB) die Anwendung von Herbiziden als unverzichtbar ansieht (Deutscher Bundestag 2009). Die DB hat in den letzten Jahren in Zusammenarbeit mit anderen europäischen

https://www.nap-pflanzenschutz.de/praxis/erfassung-der-realen-pflanzenschutzmittelanwendungen/netz-vergleichsbetriebe-pflanzenschutz/ (Stand: 30.12.2016)

Eisenbahnen und der Industrie neben den thermischen Verfahren auch den Einsatz von Laserstrahlen erprobt. Diese Technologie kann wie das Heißdampfverfahren aus den oben genannten Gründen bisher Herbizide nicht ersetzen.

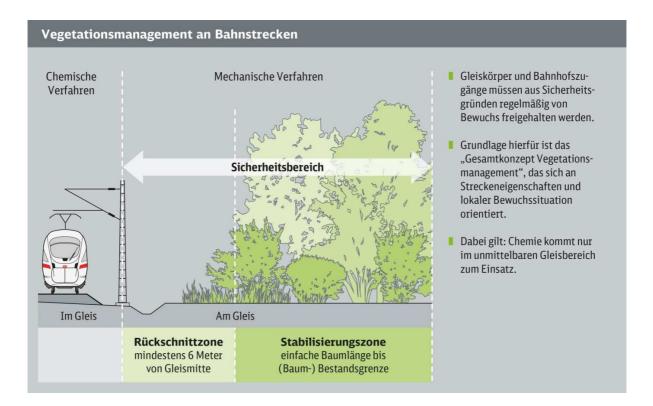


Abb. 3: Das DB-Konzept Vegetationsmanagement an Bahnstrecken (Quelle: DB 2015)

Um die Vegetationskontrolle nachhaltig und umweltfreundlich durchzuführen, hat die Deutsche Bundesbahn das "Gesamtkonzept Vegetationsmanagement" entwickelt. Dadurch sollen die Umweltauswirkungen der rund 57.500 Gleiskilometer (etwa ein Drittel verlaufen durch ökologische, Natur- oder Wasser-Schutzgebiete) verringert werden. Nach DB-Angaben wurden rund 94 Prozent aller Gleise mindestens einmal im Jahr mit Herbiziden behandelt und eine Wirkstoffmenge von 80,9 Tonnen eingesetzt. Dies entspricht 1,41 Kilogramm pro Kilometer und damit ungefähr 0,4 % des Gesamtherbizidabsatzes in Deutschland. Die von der DB eingesetzte Herbizidwirkstoffmenge ist gegenüber der letzten PSM-Erhebung von 2009 nahezu gleich geblieben.

Wie bei der letzten Erhebung 2009 sind folgende Wirkstoffe für den Einsatz auf Gleisanlagen zugelassen:

- Glyphosat
- Flumioxazin
- Flazasulfuron.

http://www.deutschebahn.com/de/nachhaltigkeit/oekologie/Naturschutz/11873926/naturschutzgerechte_pflege_am_gleis.html?start=0

(Stand: 30.12.2016)

¹¹ Quelle:

2.2 Entwicklungen in der PSM-Gesetzgebung seit der letzten Erhebung 2009

Seit der letzten Pflanzenschutzmittelwirkstofferhebung vom Jahr 2009 gab es neue und verschärfte Gesetzgebungen auf EU und Bundesebene. Basierend auf Verordnung (EG) Nr. 1107/2009 des Europäischen Parlaments und des Rates vom 21. Oktober 2009 über das Inverkehrbringen von Pflanzenschutzmitteln und zur Aufhebung der Richtlinien 79/117/EWG und 91/414/EWG des Rates (ABI. L 309 vom 24.11.2009, S. 1) wurde auch 2012 das deutsche Pflanzenschutzgesetz (kurz: PflSchG) neugefasst. Es verpflichtet die Anwender zur Durchführung des Integrierten Pflanzenschutzes und zur Durchführung der guten fachlichen Praxis im Pflanzenschutz (GfP). Der Integrierte Pflanzenschutz¹² beginnt mit der Einhaltung von Fruchtfolgen und setzt sich mit der Auswahl resistenter/toleranter Sorten und optimierter anbautechnischer Maßnahmen fort.¹³

Eine umfangreiche Überarbeitung des Pflanzenschutz-Kontrollprogramms erfolgte ab dem Jahr 2011: Die Richtlinie 91/414/EWG des Rates vom 15. Juli 1991 über das Inverkehrbringen von Pflanzenschutzmitteln wurde am 14. Juni 2011 durch die Verordnung (EG) Nr. 1107/2009 abgelöst. Damit gilt das EU-Recht unmittelbar in Deutschland. In der Verordnung (EG) Nr. 1107/2009 sind neben der Zulassung von Pflanzenschutzmitteln in einem "zonalen Verfahren" einheitliche Regelungen für parallel gehandelte Pflanzenschutzmittel festgelegt, das Inverkehrbringen von Pflanzenschutzmitteln und behandeltem Saatgut sowie die Verwendung von Pflanzenschutzmitteln wurden neu geregelt. Hersteller, Händler und Anwender müssen Aufzeichnungen über hergestellte, gelagerte, in Verkehr gebrachte und angewendete Pflanzenschutzmittel führen.

Zusätzlich mussten die rechtlichen Regelungen in Deutschland an die Vorgaben der Richtlinie 2009/128/EG des Europäischen Parlaments und des Rates vom 21. Oktober 2009 über einen Aktionsrahmen der Gemeinschaft für die nachhaltige Verwendung von Pestiziden angepasst werden. Die in Deutschland bereits seit Jahren geltende Pflicht zur Kontrolle von in Gebrauch befindlichen Pflanzenschutzgeräten findet zukünftig in der gesamten EU ihre Anwendung. Das Spritzen oder Sprühen von Pflanzenschutzmitteln mit Luftfahrzeugen ist nur noch in Ausnahmefällen und mit besonderer Genehmigung erlaubt.

Aufgrund des Bienenschutzes besonders unter Beachtung ist der Einsatz von Neonicotinoiden in der Landwirtschaft. Für die Beizung und die Ausbringung von Saatgut, das mit den Wirkstoffen Imidacloprid, Clothianidin, Thiamethoxam, Fipronil behandelt wird, gibt es seit dem 01.12.2013 für Saatgut zahlreicher Kulturpflanzenarten (u. a. Raps und Mais) ein Handels- und Verwendungsverbot.¹⁴

Mittels Verordnung des Bundesministerium für Ernährung und Landwirtschaft (BMEL), über das Inverkehrbringen und die Aussaat von mit bestimmten Pflanzenschutzmitteln behandeltem Saatgut für Winterkulturen (PflSchGetreidesaatgAnwendV) vom 20.07.2015, erneuert 7/2016, bleibt der Import und die Aussaat von Saatgut die mit den Wirkstoffen Clothianidin, Imidacloprid oder Thiamethoxam gehandelt wurden, verboten.¹⁵

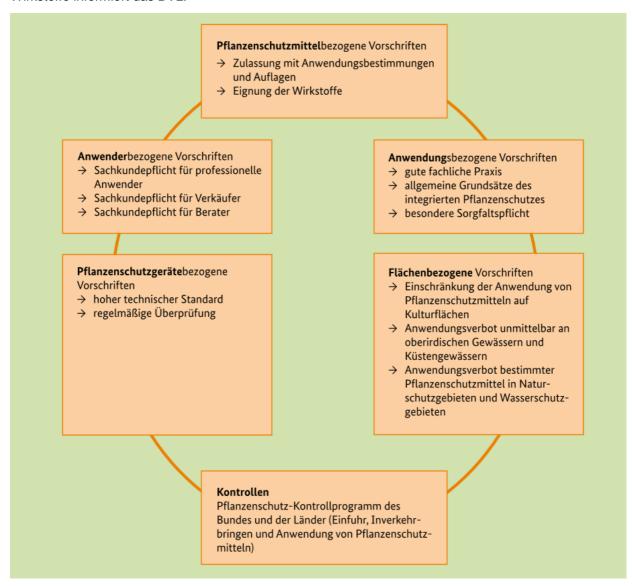
Am 21.05.2014 hat das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) für Pflanzenschutzmittel mit dem Wirkstoff Glyphosat neue Anwendungsbestimmungen erlassen. Durch diese wird einerseits die Anwendungshäufigkeit auf max. zweimal pro Jahr und die auf die Fläche auszubringende Wirkstoffmenge auf max. 3,6 kg Wirkstoff pro Hektar begrenzt. Weiterhin wird die Spätanwendung in Getreide (Sikkation) stark eingeschränkt.

¹² Integrierter Pflanzenschutz: Kombination von Verfahren, bei denen unter vorrangiger Berücksichtigung biologischer, biotechnischer, pflanzenzüchterischer sowie anbau- und kulturtechnischer Maßnahmen die Anwendung chemischer Pflanzenschutzmittel auf das notwendige Maß beschränkt wird.

¹³ http://agrarbericht.brandenburg.de/cms/detail.php/bb1.c.366544.de (Stand:30.12.2016)

¹⁴ Quelle: https://de.wikipedia.org/wiki/Neonicotinoide (Stand: 30.12.2016)

¹⁵ Quelle:


https://www.bvl.bund.de/DE/08 PresseInfothek/01 FuerJournalisten/01 Presse und Hintergrundinformationen/04 Pfla nzenschutzmittel/2013/2013_07_16_hi_Neonicotinoide.html?nn=1401276 (Stand: 30.12.2016)

¹⁶ Quelle: https://www.bmel.de/SharedDocs/Pressemitteilungen/2016/092-Bienenschutz.html (Stand: 30.12.2016)

Glyphosat als meistverwendeter Wirkstoff mit verschiedenen Anwendungsformulierungen in der Landwirtschaft Deutschlands und Brandenburgs ist in letzter Zeit zunehmend in die Kritik geraten. Diese Problematik spielte auch bei der Zulassungsverlängerung durch die EU-Kommission eine Rolle. So verlängerte am 20. Oktober 2015 die EU-Kommission die ursprünglich bis Ende 2015 gültige Zulassung erst einmal bis zum 30. Juni 2016, da sich die Neubewertung aus Gründen verzögerte, auf die die Antragsteller keinen Einfluss hatten. Die konträr geführte Diskussion dazu wird über Informationen u.a. des Bundesamtes für Risikoforschung (BfR) dargestellt.

Im Bereich des illegalen Handels mit Pflanzenschutzmitteln wurde in den letzten Jahren die Zusammenarbeit zwischen dem Zoll und den Kontrollbehörden für Pflanzenschutzmittel intensiviert. Zur Unterstützung der Kontrolltätigkeit in den Bundesländern wurde im Jahr 2013 die Task Force "Illegaler Handel von Pflanzenschutzmitteln" im Bundesamt für Verbraucherschutz und Lebensmittelsicherheit eingerichtet.

Zum jeweils aktuellen Stand von PSM-Zulassungen, Widerruf und zur Diskussion um einzelne Wirkstoffe informiert das BVL. ¹⁹

¹⁷ Quelle: https://de.wikipedia.org/wiki/Glyphosat#cite_note-BfR-FAQ-31 (Stand: 30.12.2016)

¹⁸ Quelle: http://www.bfr.bund.de/cm/343/populaere-missverstaendnisse-meinungen-und-fragen-im-zusammenhang-mit-der-risikobewertung-des-bfr-zu-glyphosat.pdf (Stand: 30.12.2016)

¹⁹ Quelle:

http://www.bvl.bund.de/DE/04 Pflanzenschutzmittel/01 Aufgaben/02 ZulassungPSM/01 ZugelPSM/03 Widerrufe/psm ZugelPSM widerrufe node.html (Stand: 30.12.2016)

Abb. 4. Elemente des bestehenden Ordnungsrechts im Pflanzenschutz (aus NAP 2013)

Wie in Abbildung 4 dargestellt, ist das Pflanzenschutz-Kontrollprogramm als Bestandteil eines umfassenden Systems zu sehen, das die sachgerechte und bestimmungsgemäße Anwendung von Pflanzenschutzmitteln zum Ziel hat.

2.3 Landwirtschaftliche Situation in Brandenburg

2.3.1 Flächennutzung und Witterung 2014

Von der Gesamtlandesfläche Brandenburgs von 2,95 Mio. ha werden rund 49 % landwirtschaftlich und rund 36 % forstwirtschaftlich genutzt. Die landwirtschaftliche Nutzfläche lag im Land Brandenburg im Jahre 2014 bei 1.313.600 ha. Von der landwirtschaftlichen Nutzfläche wurden im Jahre 2014 78,25 % als Acker und 21,4 % als Dauergrünland genutzt. Der Anteil der einzelnen Hauptfeldfruchtarten an der Ackerfläche entsprach etwa dem bundesdeutschen Durchschnitt (siehe Abbildung 5). Bezogen auf die Gesamtackerfläche wurden rund 48 % der Ackerfläche mit Getreide, 15 % mit Ölfrüchten (überwiegend Raps und Sonnenblumen), knapp 2 % mit Hackfrüchten. 27 % mit Feldfutter sowie nur 1,4 % Hülsenfrüchte zur Körnerernte bebaut²⁰ (Statistisches Bundesamt 2015).

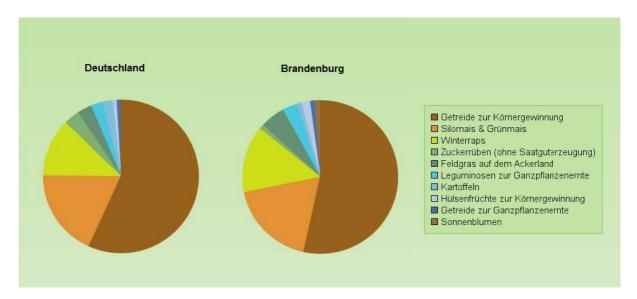


Abb. 5: Vergleich der von Hauptanbaukulturen (Ackerland) zwischen Brandenburg und BR Deutschland (eigene Darstellung nach Statistisches Bundesamt 2015²¹ und Statistik Brandenburg²²)

In Brandenburg liegt der Anteil ökologisch bewirtschafteter Flächen mit 10,3 % der gesamten landwirtschaftlichen Nutzfläche (Stand: 2015) höher als der Bundesdurchschnitt. Neben Hessen, den Saarland, den Stadtstaaten, Mecklenburg-Vorpommern und Baden-Württemberg zählt Brandenburg damit zu den Bundesländern mit einem überdurchschnittlichen Ökoflächenanteil.²³ Das Anbaujahr 2014 war in der Pflanzenproduktion das erfolgreichste überhaupt. Bei allen Getreidearten bis auf

 $^{^{20}\ \}textbf{Quelle:}\ \underline{\text{https://www.statistik-berlin-brandenburg.de/BasisZeitreiheGrafik/Bas$

BodennutzungundErnte.asp?Ptyp=300&Sageb=41002&creg=BBB&anzwer=6 (Stand: 30.12.2016)

²¹ Quelle: Statistisches Bundesamt (2015): Feldfrüchte und Grünland. Ackerland nach Hauptfruchtgruppen und Fruchtarten. https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFischerei/FeldfruechteGruenland/Tabellen/AckerlandHauptfruchtgruppenFruchtarten.html (Stand: 30.12.2016)

²² Quelle: Amt für Statistik Berlin-Brandenburg (2015): Ernteberichterstattung über Feldfrüchte und Grünland im Land Brandenburg 2014 https://www.statistik-berlin-brandenburg.de/Publikationen/Stat_Berichte/2015/SB_C02-02-00_2014j01_BB.pdf (Stand: 30.12.2016)

²³ Quelle:

https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFischerei/LandwirtschaftlicheBetriebe/Tabellen/LandwirtschaftlicheBetriebeOekologischerLandbauBundeslaender.html (Stand: 30.12.2016)

Sommerweizen wurden Spitzenerträge eingefahren, die das ertragreiche Vorjahr 2013 noch einmal übertrafen. Auch beim Silomais wurden 7,1 % Ertragssteigerung gegenüber dem Vorjahr erreicht. Der Ertrag von Körnermais und CCM war mit nur 85,2 % des Vorjahresertrages enttäuschend. Bei den Öl-, Hülsen-, und Hackfrüchten (Kartoffeln und Zuckerrüben) war das Jahr 2014 das ertragsstärkste Jahr in Brandenburg.²⁴

2.3.2 Kontrollen beim Pflanzenschutz

2014 erfolgten gemäß § 59 des PflSchG 2012 (Durchführung in den Ländern) durch das LELF 230 Kontrollen mit 20 Beanstandungen im Bereich Inverkehrbringen von Pflanzenschutzmitteln sowie 1305 Kontrollen mit 30 Beanstandungen im Bereich der Anwendung von Pflanzenschutzmitteln in Brandenburg.²⁵

Die zuständige Landesbehörde (LELF) erteilte im Jahr 2014 in den Bereichen Ackerbau, Obstbau, Gemüsebau, Zierpflanzenbau und Baumschulen insgesamt 59 "Ausnahmegenehmigungen für die Anwendung von Pflanzenschutzmitteln außerhalb zugelassener Anwendungen" (nach § 22 (2) PflSchG). 18 Anträge wurden abgelehnt. Die meisten Genehmigungen wurden im Bereich Ackerbau und Obstbau ausgesprochen. Im Bereich Ackerbau gab es aber auch neben den 21 Genehmigungen auch 11 Ablehnungen nach § 22 (2) PflSchG. ²⁶

3 Ergebnisse der Pflanzenschutzmittel-Erhebung 2014

3.1 Vorbemerkungen

Für die Pflanzenschutzmittel-Wirkstoffmengenerhebung für Brandenburg wurden insgesamt 44 vermeintliche Pflanzenschutzmittellager im Land Brandenburg angeschrieben und um Übermittlung der im Jahr 2014 in Verkehr gebrachten PSM-Mengen gebeten. Es stellte sich aber heraus, dass einige davon nicht mehr existierten oder durch Umstrukturierungen anders zugeordnet wurden. Der schon in der letzten Erhebung festgestellte Konzentrationsprozess, die zunehmende Zugehörigkeit der Lager zu nur einigen agrarischen Großhandelsunternehmen setzte sich fort. Die Recherchen ergaben, dass es in Brandenburg derzeit 30 aktive Pflanzenschutzmittellager (inklusive einige kleine Landhandelseinrichtungen) in 13 Landkreisen gibt. Von den 30 Lagern haben sich 22 in 12 Landkreisen beteiligt. Die bei der letzten Erhebung 2009 beteiligten Lager haben wieder bei der Erhebung 2014 mitgewirkt. Es konnten jedoch gegenüber 2009 zusätzliche Stellen eines Firmenverbundes in die Recherche aufgenommen werden. Somit verdoppelte sich annähernd die 2014 erfasste PSM-Wirkstoffmenge gegenüber der 2009 erfassten Menge und kommt mit den in 2014 analysierten, in Brandenburg verkauften, 1067,5 t PSM-Wirkstoffen wieder an die Erhebungsdaten von 1998/1999, 2001 und 2003 von rund 1100 – 1300 t PSM-Wirkstoffen heran.

Tab. 1: Vergleich Pflanzenschutzmitteljahresumsätze in Menge und Anzahl der Wirkstoffe

Pflanzenschutzmittelwirkstoffjahresumsätze	1998/99	2001	2003	2009	2014						
Jahresumsatz gesamt in t	1.111	1.301	1.241	576	1.067						
Anzahl der Wirkstoffe gesamt	215	214	239	216	229						
Kleinster Jahresumsatz in einem Lager in t	2,8	7,8	15,9	0,29	n.b.						
Kleinste Anzahl von Wirkstoffen in einem Lager	34	49	59	26	n.b.						
Größter Jahresumsatz in einem Lager in t	295	339	514	193	n.b.						
Größte Anzahl von Wirkstoffen in einem Lager	181	193	191	194	n.b.						
n.b.= nicht bestimmt. Für das Jahr 2014 wurde keine Auswertung nach Lager durchgeführt.											

Quelle: http://agrarbericht.brandenburg.de/cms/detail.php/bb1.c.365254.de (Stand: 30.12.2016)
 Quelle: http://agrarbericht.brandenburg.de/cms/detail.php/bb1.c.366546.de (Stand: 30.12.2016)

²⁶ Quelle: http://agrarbericht.brandenburg.de/cms/detail.php/bb1.c.366553.de (Stand:30.12.2016)

Damit ist ein Großteil der in Brandenburg in den Verkehr gebrachten Pflanzenschutzmittel in die Erhebung eingeflossen. Nicht erfasst wurde der mengenmäßig untergeordnete Bereich von in Gartencentern/Baumärkten und im Landhandel verkauften Pflanzenschutzmitteln. Weiterhin konnten mit der Erhebungsmethodik die PSM-Mengen, die aus anderen Bundesländern, EU-Ländern oder über das Internet von Landwirtschafts- oder Gartenbaubetrieben oder nicht gewerblichen Anwendern gekauft wurden, sowie der Parallelhandel nicht erfasst werden. Zahlenmäßig konnten 73 %, also ¾ der in Brandenburg vorhandenen Vertreiber an PSM ausgewertet werden. Dies muss nicht unbedingt einem entsprechenden Äquivalent an Mittelabsatz entsprechen.

Datenverarbeitung / Methodik

Die von den Lagern gelieferten Daten wurden in eine relationale Datenbank übertragen und mit den Daten aus der BVL-Zulassungsdatenbank (Stand Januar 2015) abgeglichen. Für jedes verkaufte Produkt wurde die BVL-Zulassungsnummer zugeordnet. Bei Produkten, die für den Parallelhandel zugelassen waren, wurde die BVL-Zulassungsnummer des Referenzmittels verwendet. Einige Produkte konnten nicht mittels der BVL-Datenbank identifiziert werden. In diesen Fällen wurden entweder die Verkaufsstellen kontaktiert oder die Webseite http://www.proplanta.de konsultiert. Diese führt u.a. ein historisches Verzeichnis von Parallelimporten.

Die Lager verkaufen sehr häufig mehrere Produkte als Sets (z. B. Adexar Diamant Pack, Amistar Opti Gladio Pack, Aviator Xpro Duo; Laudis Terra Pack). Für jedes dieser Sets wurde mittels der Daten der Hersteller bzw. der Verkaufsstellen das prozentuale Mengenverhältnis der einzelnen Produkte im Set ermittelt. Mit diesen Daten lassen sich aus den Gesamtmengen die verkauften Anteile den einzelnen Produkten zuordnen. Gebeiztes Saatgut wurde nicht erfasst.

Manche Produkte werden zusammen mit Formulierungshilfsstoffen (FHS) verkauft (z. B. Arrat & Dash EC, Biathlon 4D, Clearfield-Vantiga D oder Husar Plus Mero, MedaxTop & Turbo). Die Mengen an FHS wurden aus den übermittelten Gesamtmengen herausgerechnet. Für die Auswertung wurden nur die Daten zu den verkauften Pestizid- und Biozidmengen (ohne Safener, Synergisten und Zusatzstoffe) herangezogen. Daten zu Düngemitteln, Spritzenreiniger und Zubehör wurden ausgeschlossen.

Anhand der BVL-Zulassungsdatenbank wurden die Produktmengen in Wirkstoffmengen (Grundkörper) umgerechnet und aggregiert. Da die 22 Lager nur einen Ausschnitt der gesamten Umsatzmenge in Brandenburg darstellen, wurden Rangfolgen und Anteile ausgerechnet. Berechnete absolute Mengen stellen in jedem Fall eine Unterschätzung dar.

In den Daten der vorangegangenen Erfassungen waren Ungenauigkeiten bezüglich einiger Wirkbereiche. So wurde beispielsweise das Keimhemmungsmittel Chlorpropham den Herbiziden zugeordnet und nicht den Wachstumsregulatoren. Der Synergist Piperonylbutoxid wurde als Insektiizd geführt. Alle erfassten Wirkstoffe 1998-2014 wurden dementsprechend überprüft und angepasst. Alle Berechnungen der Jahre 1998-2014 wurden mit den "harmonisierten" Wirkbereichen durchgeführt.

3.2 Pflanzenschutzmittelwirkstoff-Tonnagen im Land Brandenburg im Jahr 2014

Die für das Jahr 2014 aus den 22 Lagern gemeldete Gesamtverkaufsmenge von Pflanzenschutzmitteln betrug 1.067 t Wirkstoff. Davon waren 717 t Herbizide, 227 t Fungizide, 21 t Insektizide, 97 t Wachstumsregulatoren, 2,5 t Molluskizide, 93 kg Rodentizide, 39 kg Insektizid-/Moluskizid und 36 kg Bakterizide von den erfassten PSM-Lagern verkauft worden (Abb. 6).

Abb. 6: 2014 erfasste Verkaufsmengen der einzelnen PSM-Wirkstoffgruppen in Brandenburg

Nur ein Lager meldete den Verkauf von Pheromondispensern (20 Stk.) für die landwirtschaftliche Anwendung. Die geringe Wirkstoffmenge wurde nicht weiter berücksichtigt.

Da die PSM-Erhebungen in Brandenburg in den einzelnen Jahren wegen der nicht vollständigen Rückläufe aus den PSM-Lagern insbesondere im Jahr 2009 unterschiedliche PSM-Mengen erfasste, ist ein direkter Vergleich der verkauften Wirkstoffmengen nicht sinnvoll. Dagegen sind die Anzahl der in den einzelnen Jahren verkauften Wirkstoffe (Tab. 2 und Abb. 7) sowie der Anteil der einzelnen Wirkstoffgruppen an der Gesamtmenge der erfassten Verkaufsmengen annähernd repräsentativ (siehe Abbildungen 9 -13).

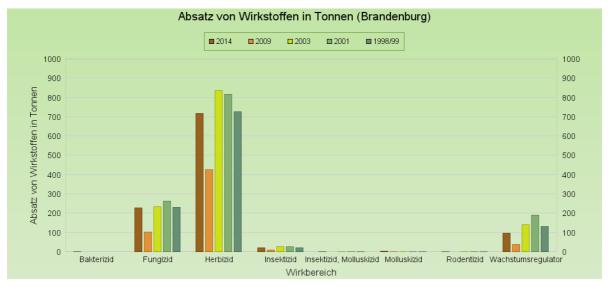


Abb. 7: Absatz der einzelnen Wirkstoffgruppen an der Gesamtmenge der erfassten Wirkstoffe

Obwohl die Anbaustruktur in Brandenburg im Ackerbau dem Bundesdurchschnitt sehr ähnlich ist (siehe Abbildung 5), gibt es bei einzelnen Wirkbereichen Unterschiede. So ist der Anteil der Herbizide und Wachstumsregulatoren in Brandenburg erhöht und die Anteile der Fungizide, Insektizide, Molluskizide, Bakterizide, Rodentizide und Nematizide verringert. Gründe für den erhöhten Herbizideinsatz können der Verzicht auf mechanische Beikrautregulierung, geänderte Bodenbearbeitungsverfahren, sowie Arbeitstechnik in der Aussenwirtschaft sein. Im Bundesvergleich niedrigere Niederschläge, damit reduzierter Pilzdruck könnten Ursache für den verringerten Fungizidverbrauch sein. Weiterhin hat Brandenburg einen über dem Bundesdurchschnitt liegenden

Anteil ackerbaulich bewirtschafteter Fläche, bei weniger Obstbau, wenig Gemüse- und kaum Weinbau, die einen höheren PSM-Einsatz pro Flächeneinheit benötigen, was auch zu Abweichungen im Spektrum der Wirkstoffbereiche und der durchschnittlichen Pflanzenschutzmittelmenge pro ha beiträgt.

Insgesamt wurden 2014 aus den erfassten Lagern 229 Wirkstoffe in Brandenburg in den Verkehr gebracht, während im gleichen Zeitraum 276 PSM-Wirkstoffe (seit 2014 wurden die Safener²⁷ und Synergisten²⁸ wieder zu den PSM zugerechnet) in Deutschland zugelassen waren (BVL 2015a). Bei der Anzahl der verkauften Wirkstoffe fällt die Abnahme bei den Insektiziden von 45 - 49 in den vorherigen Untersuchungsjahren auf 38 im Jahr 2009 und 42 verschiedene Wirkstoffe im Jahr 2014 ins Auge. Bei den Wachstumsregulatoren sind neue Wirkstoffe zugelassen worden, die sich auch in der Verwendung in Brandenburg widerspiegeln.

Tab. 2: Anzahl der aus den erfassten Lagern verkauften Wirkstoffe in den einzelnen Untersuchungsjahren im Land Brandenburg,

* der einzige sonstige Wirkstoff war ein Repellent gegen Nagetiere,

** bei mehrfacher Nutzung wird ein die Wirkstoff unter verschiedenen Gruppen angeführt, dadurch wird die Summe der Zahlen in den einzelnen Spalten größer als die Angabe unter "Gesamt" zeigt.

	1998/99	2001	2003	2009	2014
Herbizide	83	83	92	91	91
Fungizide, Bakterizide	73	70	72	68	76
Wachstumsregler	5	4	7	6	9
Insektizide, Akarizide	45	48	49	38	42
Pheromone				3	
Molluskizide	2	3	3	2	3
Nematizide	1	1	1	1	0
Rodentizide	6	5	14	10	8
Sonstige*			1		
Gesamt**	215	214	239	216	229

http://www.bvl.bund.de/DE/Service/Glossar/Functions/glossar.html?nn=1401288&lv2=1401760&lv3=1400180 (Stand: 30.12.2016)

Safener: Stoff, der einem Pflanzenschutzmittel beigefügt wird, um die phytotoxische Wirkung der Zubereitung auf bestimmte Pflanzen zu unterdrücken oder zu verringern.

Synergist: Stoff, der keine oder nur eine schwache Wirkung auf Schadorganismen aufweist, aber die Wirkung des Wirkstoffs in einem Pflanzenschutzmittel verstärkt.
http://www.bvl.bund.de/DE/Service/Glossar/Functions/glossar.html?nn=1401288&lv2=5410666&lv3=1400182 (Stand: 30.12.2016)

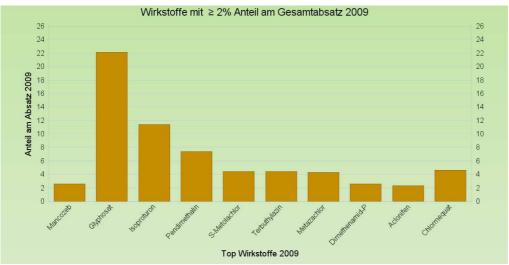


Abb. 8: Vergleich der "Top-Wirkstoffe" 2014 zu 2009 in den Erhebungen in Brandenburg

1999-2009		2009	2009 Anteil	2009 Anteil am		Rangfolge nach Absatz (Gesamt)					
Wirkstoff	Wirkbereich	Absatz (kg)	Gesamt	Wirkbereich	2014	2009	2003	2001	1998/99		
Glyphosat	Herbizid	127576,4	22.1	30.1	1	1	1	1	2		
Isoproturon	Herbizid	65602,7	11.4	15.5	2	2	2	2	1		
Pendimethalin	Herbizid	42532,9	7.4	10	3	3	5	5	4		
Chlormequat	Wachstumsregulator	26481,5	4.6	67.7	4	4	3	3	3		
S-Metolachlor	Herbizid	25199,0	4.4	5.9	5	5					
Terbuthylazin	Herbizid	25144,7	4.4	5.9	6	6	10	14	11		
Metazachlor	Herbizid	24893,9	4.3	5.9	8	7	4	4	5		
Dimethenamid-P	Herbizid	14799,0	2.6	3.5	11	8	67				
Mancozeb	Funaizid	14760,0	2.6	14.4	10	9	6	7	6		
Aclonifen	Herbizid	13351,2	2.3	3.1	25	10	11	15	18		
Tebuconazol	Funaizid	10622,0	1.8	10.4	7	11	13	9	12		
Fenpropimorph	Funaizid	8330,2	1.4	8.1	15	12	19	12	15		
Metamitron	Herbizid	7804,8	1.4	1.8	14	13	7	8	9		
Dimethachlor	Herbizid	7282,7	1.3	1.7	31	14	35	23	22		
Chlorthalonil	Funaizid	6914,7	1.2	6.8	16	15	56	38	53		
Diflufenican	Herbizid	6829,8	1.2	1.6	18	16	25	19	20		
Napropamid	Herbizid	6800,7	1.2	1.6	30	17	156	127	93		
Bentazon	Herbizid	5749,8	1	1.4	43	18	8	10	7		
MCPA	Herbizid	5615,9	1	1.3	13	19	12	13	10		
Mepiquat	Wachstumsregulator	4916.7	.9	12.6	20	20					

Abb. 9: Anteile der 20 meistverkauften PSM-Wirkstoffe am Gesamtumsatz in Brandenburg für 2009 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009 (Datenbankauszug)

1999-2014		2014	2014	2014	Rangfolge nach Absatz (Gesamt)						
Wirkstoff	Wirkbereich	Absatz (kg)	Anteil Gesamt	Anteil am Wirkbereich	2014	2009	2003	2001 1	998/99		
Glyphosat	Herbizid	236420,6	22.2	33	1	1	1	1	2		
Isoproturon	Herbizid	68519,6	6.4	9.6	2	2	2	2	1		
Pendimethalin	Herbizid	65750,6	6.2	9.2	3	3	5	5	4		
Chlormequat	Wachstumsregulator	62224,2	5.8	64.1	4	4	3	3	3		
S-Metolachlor	Herbizid	41160,1	3.9	5.7	5	5					
Terbuthylazin	Herbizid	39147,6	3.7	5.5	6	6	10	14	11		
Tebuconazol	Funaizid	38170,4	3.6	16.8	7	11	13	9	12		
Metazachlor	Herbizid	37304,3	3.5	5.2	8	7	4	4	5		
Chlortoluron	Herbizid	29690,5	2.8	4.1	9	22	205	56	23		
Mancozeb	Funaizid	25117,4	2.4	11.1	10	9	6	7	6		
Dimethenamid-P	Herbizid	20897,6	2	2.9	11	8	67				
Prochloraz	Funaizid	17228,3	1.6	7.6	12	26	53	26	19		
MCPA	Herbizid	16029,9	1.5	2.2	13	19	12	13	10		
Metamitron	Herbizid	15667,6	1.5	2.2	14	13	7	8	9		
Fenpropimorph	Funaizid	15283,7	1.4	6.7	15	12	19	12	15		
Chlorthalonil	Funaizid	14694,8	1.4	6.5	16	15	56	38	53		
Prothioconazol	Funaizid	14430,0	1.4	6.4	17	30	69				
Diflufenican	Herbizid	13999,9	1.3	2	18	16	25	19	20		
Epoxiconazol	Funaizid	13328,5	1.3	5.9	19	23	31	24	33		
Mepiquat	Wachstumsregulator	13032,6	1.2	13.4	20	20					

Abb. 10: Anteile der 20 meistverkauften PSM-Wirkstoffe am Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009 (Datenbankauszug)

Abb. 11: Darstellung der Anteile der Topwirkstoffe in ihren Wirkstoffbereichen im Jahr 2009

Abb. 12: Darstellung der Anteile der Topwirkstoffe in ihren Wirkstoffbereichen im Jahr 2014

Wie aus den Abbildungen 9 bis 12 ersichtlich wird, gab es im Zeitraum zwischen den PSM-Wirkstofferhebungen 2009 und 2014 Verschiebungen bei der Verwendung von Wirkstoffen in Brandenburg. Der Herbizidwirkstoff Chlortoluron ist von Rang 22 in 2009 auf Rang 9 der in Brandenburg 2014 am meisten verkauften Wirkstoffe gelangt. Ebenso gab es deutliche Rangverschiebungen bei den 3 Fungizidwirkstoffen Prochloraz, Prothioconazol und Epoxiconazol. Deutliche abwärtsgerichtete Rangverschiebungen waren im Vergleich 2009 zu 2014 bei den 4 Herbizidwirkstoffen Aclonifen, Dimethachlor, Napropamid und Bentazon zu verzeichnen.

3.3 Herbizide

Die in der Erhebung 2014 erfassten Verkaufsmengen an Herbiziden enthielten ähnlich wie 2009 91 verschiedene Wirkstoffe. Der am häufigsten verkaufte Wirkstoff Glyphosat umfasste allein 22 % der 2014 in Brandenburg in den Verkehr gebrachten Wirkstoffgesamtmenge. Bei den Herbiziden betrug der Anteil von Glyphosat 33 % aller davon verkauften Wirkstoffe . Von den 20 Wirkstoffen, die im Jahr

2014 am meisten verkauft wurden, sind über die Hälfte (55 %) Herbizide. Diese stellen damit wieder die größte Wirkstoffgruppe.

Abb. 13: Anteile der 15 meistverkauften Wirkstoffe am Herbizid-Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009

Die 2014 fünf am häufigsten in Verkehr gebrachten Herbizid-Wirkstoffe – Glyphosat, Isoproturon Pendimethalin, S-Metolachlor und Terbuthylazin - machten dabei 36 % der Gesamtwirkstoffmenge aus. Der Anteil von Glyphosat ist seit 1998/1999 stetig angestiegen, der von Isoproturon dagegen abgesunken. Bei einigen Stoffen wie Metazachlor und Pendimethalin blieb der Anteil über die Jahre relativ konstant. Der Wirkstoff Bentazon in den ersten Erhebungen unter den 10 Häufigsten hat bei der Erhebung 2009 und 2014 noch mehr an Bedeutung verloren.

Die Herbizidwirkstoffe Glyphosat, Isoproturon und Metazachlor besitzen ein hohes Potenzial an Ökotoxizität, weil es auf Zielflächen zu toxischen Effekten bei Nichtzielorganismen kommen kann, besonders stören sie das Gleichgewicht von aquatischen Ökosystemen (LUA 2005). Auch der 2014 am dritthäufigsten eingesetzte Herbizidwirkstoff Pendimethalin (insbesondere in den Präparaten: Stomp Aqua, Trinity) ist sehr giftig für Wasserorganismen. Pendimethalin war in den vorherigen Erhebungen bei den Herbiziden immer auf Rang 3-4 und wird seit Jahrzehnten in erheblichen Mengen in der Landwirtschaft Brandenburgs eingesetzt. Ebenso wie der vorwiegend im Kartoffelanbau verwendete Herbizidwirkstoff Prosulfocarb (2014: Rang 12 und in den vorherigen Erhebungen bei den Herbiziden zwischen Rang 12-23). Pendimethalin und Prosulfocarb verursachten aufgrund ihrer hohen Flüchtigkeit durch Thermik und Wind in den letzten Jahren Probleme nicht nur in Brandenburg. Diese Wirkstoffe werden über weite Strecken verfrachtet und führten in Kulturen, die nicht mit den Wirkstoffen behandelt wurden, zu erhöhten Rückständen. Ein Biolandbetrieb in der Uckermark war wiederholt von Pendimethalin- und Prosulfocarbbelastungen an Arzneipflanzen betroffen. Auf Grund der großen Verfrachtungsentfernungen (>1 km) ist es in der Praxis kaum möglich, den Verursacher ausfindig zu machen. Dies belegt einen Anbau von Kulturen mit besonders hohen Qualitätsansprüchen (Babynahrung oder Heil- und Gewürzpflanzen) mit einem besonders hohen wirtschaftlichen Risiko. Das Problem hat das Landesamt für Umwelt, Gesundheit und Verbraucherschutz (LUGV) Brandenburg veranlasst eine Studie zu beauftragen, um den Nachweis zu erbringen, dass die Unkrautvernichtungsmittelwirkstoffe Pendimethalin und Prosulfocarb sehr

weiträumig über thermische Luftbewegungen verbreitet werden. Die Gutachter sprechen von einer "unerwünscht weiträumigen und anhaltenden Verbreitung insbesondere von Pendimethalin". Die festgestellte Belastung liegt 100- bis 1000-fach höher als die Grundbelastung in unbelasteten Referenzgebieten der Nord- und Ostsee. Die Verfasser empfehlen daher "im Zuge der anstehender Neuzulassungen von Pendimethalin ist dies mindestens mit der Auflage zu verbinden, dass das Verbreitungspotenzial des Herbizides über die Luft wirksam minimiert wird und herstellerseits bestimmte Formulierungen mit ungünstigem Dampfdruck effektiv verbessert werden bzw. nur entsprechende Formulierungen in Verkehr kommen (Kapselung)" (Hofmann & Schlechtriemen 2014)²⁹.

Das Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuordnung (LELF) des Landes Brandenburg postuliert in seinem Hinweis Feldbau 40/2015 vom 11.09.2015: "Zur Vermeidung weiterer ungewollter Kontaminationen empfehlen wir Ihnen nach Möglichkeit auf den Einsatz von Herbiziden mit dem Wirkstoff Pendimethalin zu verzichten."30

Auch die Agrarministerkonferenz vom 2. Oktober 2015 beschäftigte sich mit der Fernverfrachtung von Pestiziden. Darin nehmen die Minister mit "Besorgnis zur Kenntnis, dass bestimmte Pestizidwirkstoffe wie beispielsweise Pendimethalin oder Prosulfocarb aufgrund ihrer hohen Flüchtigkeit durch Thermik und Wind über weite Strecken verfrachtet werden und in Kulturen, die nicht mit den Wirkstoffen behandelt wurden, zu erhöhten Rückständen führen können." Nach Auffassung der Minister müssen diese Erkenntnisse im Zulassungsverfahren von Pestizidwirkstoffen Berücksichtigung finden. Sie bitten das BMEL sich auf europäischer Ebene dafür einzusetzen. Die Minister begrüßten die Ankündigung des BMEL, ein umfassendes Monitoring von Pestizidwirkstoffen in der Luft erarbeiten zu lassen.31

Die Zukunft wird zeigen, ob sich die Abdriftprobleme durch Pendimethalin lösen lassen, so lange der Wirkstoff in der jetzigen Formulierung verkauft wird. Pendimethalin wird von der US-Amerikanischen Umweltschutzbehörde (US EPA) als PBT (persistent, bioaccumulative and toxic) eingestuft³² und die EU-Kommission stuft den Stoff aufgrund von zwei der PBT-Kriterien als Substitutionskandidat ein³³. Es handelt sich hier also insgesamt um einen problematischen Wirkstoff, der in verhältnismäßig hohen Mengen eingesetzt wird.

3.4 Insektizide

Die in der Erhebung 2014 erfassten Verkaufsmengen an der viertgrößten Wirkstoffgruppe der Insektizide wurden 41 verschiedene Wirkstoffe ermittelt.

Bei den Insektiziden gab es wesentlich stärkere Veränderungen bei den Verkaufszahlen der Insektizidwirkstoffen. Der 2009 zweithäufigste verwendete Insektizidwirkstoff Chlorpyrifos-methyl ist in 2014 nicht mehr verkauft worden. Der Wirkstoff hat seit 2008 keine Zulassung mehr und wurde vermutlich 2009 im Rahmen der Ablauffrist noch abverkauft. Dimethoat ist wie die Jahre davor (außer

³⁰ Quelle: http://www.isip.de/isip/servlet/page/deutschland/meinisip/hinweisdienste?archive=135666&archiveFolder= (Stand:

33 http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.selection&language=EN (Stand: 30.12.2016)

²⁹ www.lfu.brandenburg.de/media fast/4055/fb lugv-147.pdf

³¹ Quelle: http://www.agrarheute.com/dlz/news/pflanzenschutz-agrarminister-besorgt-ueber-abdrift (Stand: 30.12.2016)

³² http://iaspub.epa.gov/triexplorer/tri_text.list_chemical_pbt (Stand: 30.12.2016)

2009) der am meisten verkaufte Insektizidwirkstoff. Der 2002 zugelassene Wirkstoff Thiacloprid (einer der Neonicotinoide) war der im Jahr 2014 am zweithäufigste und 2009 der am häufigsten verkaufte Insektizidwirkstoff. Etofenprox stieg in der Rangfolge der Wirkstoffgruppe von Rang 6 in 2009 auf Rang 3 im Jahr 2014.

Der Anteil von Pirimicarb bei den Insektiziden ist seit 1998/1999 leicht, aber kontinuierlich zurückgegangen.

Der Wirkstoff Bifenthrin, der 2009 noch auf Rang 11 lag, wurde 2014 nicht mehr verkauft. Hier hat vermutlich eine Substitution durch andere Stoffe stattgefunden.

Mehrere Wirkstoffe, die 2003 noch zu den zehn meistverkauften gehörten, wurden aus den 2009 und 2014 erfassten Lagern nicht mehr in Verkehr gebracht, wie z. B. das 2003 am dritthäufigsten verkaufte Methamidophos, dessen Zulassung 2008 ausgelaufen war, sowie das nur bis 2004 zugelassene Oxydemeton, aber auch Tebufenozid.³⁴ Pflanzenschutzmittel mit Mineralölen als insektizidem Wirkstoff, die in den vergangenen Jahren in größerer Menge verkauft wurden, wurden aus den 2009 erfassten Lagern in geringen Mengen und im Jahr 2014 gar nicht mehr in den Verkehr gebracht. Dafür spielt die Wirkstoffgruppe Paraffinöle (CAS 8042-47-5) die in den vorherigen Erhebungen nicht aufgeführt war, in der Rangfolge von 2014 mit Rang 11 noch eine gewisse Rolle. Mineralöle, zu denen auch die Paraffinöle gehören, werden als Zusatzstoffe sowie als Insektizide/Akarizide eingesetzt. Die Absatzerfassung 2014 aggregiert nur die Daten der als Insektizide deklarierten Öle nicht die der Zusatzstoffe. Da nicht klar ist, wie in den vorherigen Erfassungen mit den Ölen umgegangen wurden und welche Öle sich hinter dem dort verwendeten "Mineralölen" verbergen, können die Daten nicht verglichen werden.

Der biologische insektizide Wirkstoff "Adoxophyes orana Granulovirus Stamm BV-0001" taucht auf Rang 35 von 42 erstmalig in der Erhebung von 2014 auf. Bei diesem Stoff handelt es sich um einen spezifischen Virus des Fruchtschalenwickler (Adoxophyes orana).

Abb. 14: Anteile der 9 meistverkauften Insektizid-Wirkstoffe am Insektizid-Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009

-

³⁴ Tebufenozid ist noch im Obst und Weinbau zugelassen.

Die Daten der letzten drei Erhebungen zeigen zum Anteil der Insektizidgruppen am Gesamtabsatz eine deutliche Dynamik (Abbildung 14).

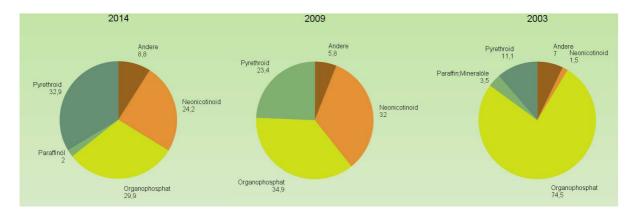


Abb. 15: Top 15 Insektizide der Jahre 2014, 2009, 2003 – Anteile am Wirkbereich nach Chemikaliengruppe

Noch 2003 dominierten die Organophosphate; Neonicotinoide spielten kaum eine Rolle. Im Jahr 2009 waren die Anteile an Pyrethroiden und Neonicotinoiden auf Kosten der Organophosphate stark gestiegen. Im Jahr 2014 ist der Anteil an Pyrethroiden weiter angestiegen und der Anteil der Neonicotinoide stark, und der Organophosphate leicht zurückgegangen. Trotz einer Veränderung der Anteile ist eine Reduktion des Absatzes nicht messbar, da sich die erfassten Absätze um Vergleich zu 2009 mehr als verdoppelt haben.

3.5 Fungizide

Neu an der Erhebung 2014 ist, dass die Bakterizide nicht mehr den Fungiziden zugeordnet werden, sondern bei den sonstigen Wirkstoffgruppen einsortiert werden. Explizit anti-bakterielle Stoffe z.B. gegen den Feuerbrand werden aber weiterhin als Bakterizide geführt.

Die in der Erhebung 2014 erfassten Verkaufsmengen an Fungiziden enthielten 76 verschiedene Wirkstoffe. Das Wirkstoffspektrum hat sich gegenüber den Vorjahren weiter erhöht und ist im Gegensatz zu den anderen Wirkstoffmittelgruppen breiter gefächert.

Bei den Fungizidwirkstoffen gab es zu früheren Untersuchungsjahren vergleichsweise geringe Veränderungen. Mancozeb, der in den Vorjahren der am meisten verkaufte Fungizidwirkstoff, wurde durch den Wirkstoff Tebuconazol als Spitzenreiter 2014 abgelöst.

Prochloraz (Rang 3) hat Fenpropimorph im Rang gegenüber 2009 überholt. Chlorthalonil und Prothioconazol spielten im Absatz eine ähnliche Rolle wie bei der Erhebung 2009. Der 2003 neu zu gelassenen Wirkstoffe Boscalid hatte nach dem zunehmenden Absatz (2009) in der Erhebung 2014 nur noch den Rang 13 der Fungizidwirkstoffe.

Bemerkenswert ist, dass die klassischen Fungizidwirkstoffe auf Schwefel- und Kupferbasis immer mehr an Bedeutung verlieren.

In der Erhebung 2014 steht Schwefel an 22. Stelle (Anteil am Wirkbereich 1,2%). In der Rangfolge aller Stoffe rutschte Schwefel von Platz 21 (2003) auf Platz 54 ab. Schwefelformulierungen, die im

Weinbau in vergleichsweise hohen Mengen pro Fläche eingesetzt werden wird und auch im ökologischen Landbau eine Rolle spielen, sind in Brandenburg eher unbedeutend.

Abb. 16: Anteile der 11 meistverkauften Wirkstoffe am Fungizid-Gesamtumsatz in Brandenburg für 2014 und deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009

3.6 Wachstumsregulatoren

Die in der Erhebung 2014 erfassten Verkaufsmengen an Wachstumsregulatoren enthielten 9 verschiedene Wirkstoffe, von denen einer, Chlormequat, wie schon 2009, allein zwei Drittel der Verkaufsmenge ausmachte. Der relativ neue Wirkstoff Mepiquat, der erstmalig 2009 erfasst wurde, konnte seinen Umsatz noch bedeutend steigern und hat damit wiederholt dem sonst auf Rang 2 liegenden Ethephon den Rang abgelaufen. Die Wirkstoffe Paclobutrazol und Maleinsäurehydrazid sind Neuzulassungen und erschienen in den vorherigen Studien nicht. Der Wirkstoff Chlorpropham wird als Keimhemmungsmittel bei der Kartoffellagerhaltung eingesetzt und wurde in den vorherigen Erhebungen nicht als Wachstumsregulator, sondern als Herbizidwirkstoff erfasst.

Der Wirkstoff Trinexapac-ethyl, auf Rang 4 in den Erhebungen 2009 und 2014, hatte einen geringeren aber steigenden Anteil am Absatz der verkauften Wachstumsregulatoren in Brandenburg.

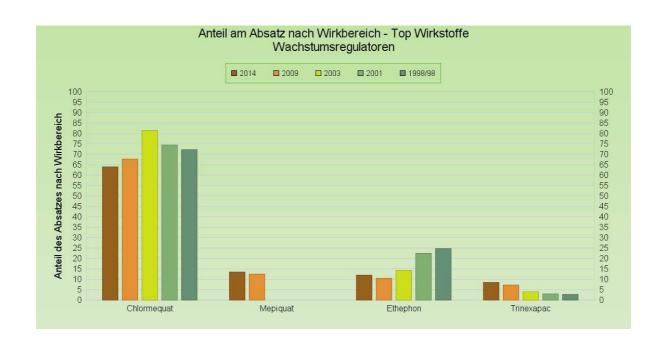


Abb. 17: Anteile der meistverkauften Wirkstoffe am Wachstumsregulatoren-Gesamtumsatz in Brandenburg für 2014 u. deren Anteile in den Erhebungen 1998/99, 2001, 2003 und 2009

3.7 Sonstige PSM-Wirkstoffe

Die sonstigen PSM-Wirkstoffe setzen sich aus Mitteln zur Bekämpfung von Fadenwürmern, Schnecken und Nagetieren und mit der Abwehr von Bakteriosen (Feuerbrand) zusammen.

2014 wurde erstmals der Verkauf des Präparates LMA (Aluminiumkaliumsulfat) erfasst, das nur in Notfällen mit Ausnahmegenehmigung gegen Feuerbrand bei Kernobst eingesetzt werden darf³⁵. In der Erhebung 2009 wurde der bakterizide Wirkstoff Streptomycin, auch in Notfällen zur Feuerbrandbekämpfung, von den erfassten Lagern vertrieben.

Der in den früheren Jahren mit Abstand meistverkaufte Wirkstoff bei den sonstigen PSM-Wirkstoffen, Dazomet, ein Mittel, das als Nematizid, Herbizid und Fungizid benutzt werden kann, wurde 2014 in den befragten Lagern nicht verkauft.

2014 waren in der Gruppe der "Sonstigen" die Schneckenmittel (Molluskizide) am bedeutendsten. Hier kam insbesondere der Wirkstoff Metaldehyd (knapp 2500 kg) zum Verkauf. Das ist etwa das Doppelte der bisher höchsten erfassten Menge von 2001. Methiocarb, ein insektizider und molluskizider Wirkstoff spielte im Absatz 2014 mit rund 30 kg gegenüber den vorherigen Erhebungen eine geringe Rolle. Auch der molluskizide Wirkstoff Eisen-III-phosphat war mit 3 kg Verkaufsmenge in 2014 und 5 kg in 2003 unbedeutend.

Bei den 2014 verkauften Mitteln gegen Nagetiere (Rodentizide) wurden die bisher höchsten verkauften Mengen in der Erhebungsreihe festgestellt und die Menge von 60,5 kg Rodentizidwirkstoffe von 1998/1999 übertroffen. Dabei spielte der Wirkstoff Zinkphosphid zu 99 % mit 92 kg die wichtigste Rolle als Wirkstoff gegen die Schadnager. Aluminiumphosphid wurde im Vergleich zu den anderen Jahren (1998/1999 wurden 52,5 kg Wirkstoffabgesetzt) 2014 nicht verkauft.

³⁵ http://www.bvl.bund.de/DE/04 Pflanzenschutzmittel/01 Aufgaben/02 ZulassungPSM/01 ZugelPSM/02 Genehmigungen/psm ZugelPSM genehmigungen node.html#doc1400532bodyText3 (Stand: 30.12.2016)

Vergleich der von den Herstellern gemeldeten PSM-Verkaufsmengen für Deutschland mit in Brandenburgischen Lagern erfassten Mengen

Nach § 64 (§ 19 alt) PflSchG sind die Hersteller und Vertreiber von Pflanzenschutzmitteln verpflichtet, dem Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) jährlich die Mengen der Pflanzenschutzmittel und der darin enthaltenen Wirkstoffe zu melden, die im Inland abgegeben wurden. Die Ergebnisse werden vom BVL jeweils in einem Bericht veröffentlicht. Grundlage des folgenden Vergleichs ist der entsprechende Bericht für das Jahr 2014 (BVL 2015a). Die Verkaufsmengen der einzelnen Wirkstoffe werden von der BVL allerdings nur in Größenklassen angegeben, so dass nur ein grober Vergleich mit den Brandenburgischen Daten möglich ist.

4.1 Vergleich der Wirkstoff-Anzahl

Insgesamt waren 2014 in Deutschland 276 PSM-Wirkstoffe zugelassen, von denen 34.500 t³⁶ im Inland verkauft wurden. Die Anzahl der zugelassenen Wirkstoffe ist gegenüber 2009 wieder angestiegen, weil zu den Wirkstoffen seit 2014 die Safener³⁷ und Synergisten ³⁸ hinzugezählt werden und diese in den vorhergehenden Recherchen nicht enthalten waren.

2014 wurden 83 % der in Deutschland zugelassenen Wirkstoffe aus den erfassten brandenburgischen Lagern verkauft. In den früheren Untersuchungsjahren lag der Prozentsatz zwischen 78 % (2001) und 96 % (2003).

Tab. 3: Anzahl der in Deutschland zugelassenen sowie der in Brandenburg verkauften PSM-Wirkstoffe

	1998/99	2001	2003	2009	2014
Anzahl in Deutschland zugelassener Wirkstoffe		273	248	255	276
Anzahl in Brandenburg verkaufter Wirkstoffe	215	214	239	216	229
Anteil der verkauften Wirkstoffe an der zugelassenen Anzahl		78%	96%	85%	83%

4.2 Vergleich der Wirkstoff-Verkaufsmengen

In Deutschland wurden 2014 laut (BVL 2015a) 34 515 t PSM-Wirkstoffe ohne inerte Gase verkauft. Wird diese Menge auf die 11,869 Mio. ha Ackerland ausgebracht sind das 2,9 kg PSM-Wirkstoff je ha. Die in dieser Erhebung erfaßten 1067,5 t PSM-Wirkstoffe in Brandenburg auf die Ackerfläche bezogen ergeben nur 1,04 kg ausgebrachte PSM-Wirkstoffe pro Hektar und spiegeln damit die nicht vollständige Erfassung des Absatzes und der externen Bezugsquellen für Pflanzenschutzmittel wider.

Im Vergleich zu den für die gesamte Bundesrepublik angegebenen Verkaufsmengen ergibt sich für Brandenburg ein deutlich höherer Anteil an Herbiziden: der Anteil betrug nach der Erhebung 2014 67 % und für Deutschland dagegen nur 59 % (BVL 2015a). Schon in früheren Erhebungen (LUA 2001, LUA 2003, LUA 2005 und LUGV 2012) wurde dieser Unterschied in gleicher Größenordnung

³⁶ Quelle: (BVL 2015a)

³⁷ Safener: Stoff, der einem Pflanzenschutzmittel beigefügt wird, um die phytotoxische Wirkung der Zubereitung auf bestimmte Pflanzen zu unterdrücken oder zu verringern.

³⁸ Synergist: Stoff, der keine oder nur eine schwache Wirkung auf Schadorganismen aufweist, aber die Wirkung des Wirkstoffs in einem Pflanzenschutzmittel verstärkt.

Quelle: http://www.bvl.bund.de/DE/Service/Glossar/Functions/glossar.html?nn=1401288&lv2=1401760&lv3=1400180 (Stand: 30.12.2016)

http://www.bvl.bund.de/DE/Service/Glossar/Functions/glossar.html?nn=1401288&lv2=5410666&lv3=1400182 (Stand: 30.12.2016)

festgestellt. Bei der Erhebung 2009 lag der Herbizidanteil mit knapp 74 % an der gesamten in Verkehr gebrachten Wirkstoffmenge von PSM Erhebungen in Brandenburg am höchsten.

In Brandenburg folgten 2014 als 2. Wirkstoffgruppe die Fungizide mit 21 % am gesamten Wirkstoffumsatz. Mit 9 % der erfassten Wirkstoffe waren die Wachstumsregler und mit 2 % die Insektizide beteiligt. Diese Anteile haben sich in den fünf Erhebungsjahren in Brandenburg nur wenig verändert. Lediglich der Anteil der Wachstumsregulatoren scheint sich in den letzten Jahren leicht verringert zu haben.

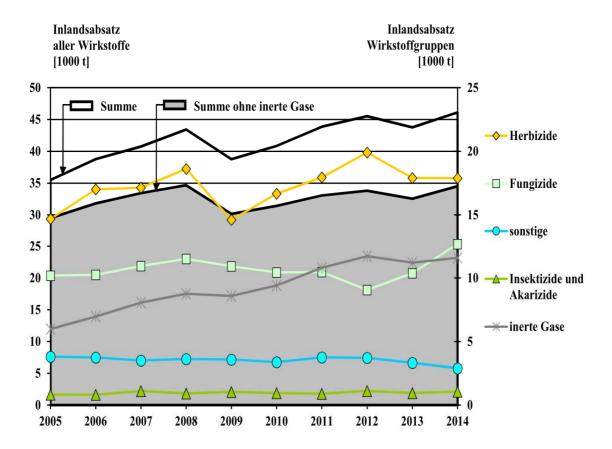


Abb. 18: Entwicklung des Inlandsabsatzes von Wirkstoffen und -gruppen in Pflanzenschutzmitteln in Deutschland (Quelle: BVL 2015a)

Im Vergleich zu Deutschland wurde 2014 in Brandenburg ein um 6 Prozentpunkte geringerer Fungizidanteil, ein fast doppelt so hoher Prozentanteil an Wachstumsregulatoren und ein gleicher Anteil an Insektiziden festgestellt. Bei den sonstigen Wirkstoffen wird in Deutschland mit 2 % Anteil ein wesentlich höherer Anteil an Molluskiziden und Rodentiziden, die den Hauptanteil der Gruppe "sonstige Wirkstoffe" ausmachen, verkauft.

Wie schon in den vorherigen Erhebungen erwähnt, ist das mit dem im Land Brandenburg unter dem Bundesdurchschnitt liegenden Anteil von Obst- und Gemüsebau und einem praktisch fehlenden Weinbau in Verbindung mit dem stärker kontinental geprägten Klima erklärbar (s. LUA 2001).

Abb. 19: Vergleich der Anteile der Wirkbereiche an Wirkstoffabsatz Deutschland³⁹ – Brandenburg 2014

Nach (BVL 2015a) war der Herbizidwirkstoff Glyphosat nach dem Lagerschutzmittel Kohlendioxid der am meisten verkaufte PSM-Wirkstoff und als Einziger in der Mengengruppe der 2500 – 10000 t verkauften. Ähnlich wie schon in den vorherigen Erhebung wurden 2014 in Deutschland folgende Wirkstoffe in der Gruppe 1000 – 2500 t gelistet: die Herbizidwirkstoffe Isoproturon und Metamitron, der Wachstumsreglerwirkstoff Chlormequat und die Fungizidwirkstoffe Chlorthalonil und Mancozeb sowie das ebenfalls als Fungizid eingesetzten Schwefel.

Auch in Brandenburg gehörten Glyphosat, Isoproturon, und Chlormequat zu den fünf meistverkauften Wirkstoffen. Verglichen mit der Erfassung 2009 hat sich der Absatz von Glyphosat mit 236 t nahezu verdoppelt. Mancozeb liegt in Brandenburg auf Rang 7 der meist verkauften Wirkstoffe. Zu den fünf meistverkauften Wirkstoffen in Brandenburg gehören, wie bereits 2009 festgestellt, die Herbizidwirkstoffe Pendimethalin und S-Metolachlor. Schwefel dagegen spielt als Fungizid eine untergeordnete Rolle.

Die Gruppe der in einer Menge von 250 bis 1000 Tonnen verkauften Wirkstoffe in Deutschland umfasst in den Erhebungen des BVL 24 Wirkstoffe. Die meisten der dort aufgeführten Wirkstoffe sind auch in Brandenburg unter den Top 24 Wirkstoffen. Andere in Deutschland bedeutende Wirkstoffe wie Aluminiumkaliumsulfat (gegen Feuerbrand) oder die drei Fungizide Metiram (Brandenburg: Rang 69), Captan (Brandenburg: Rang 103) und Folpet (Brandenburg: Rang 184) spielen in Brandenburg eine untergeordnete Rolle.

Von dem in den letzten Erhebungen meistverkauften Molluskizid Metaldehyd wurden bundesweit 256 t Wirkstoff abgesetzt. 10 Prozent, also 2,5 t wurden 2014 in Brandenburg verkauft.

Bei den Rodentiziden wurden bundesweit 16 t 2014 in den Verkehr gebracht. Die in Brandenburg verkauften 92 kg Zinkphophid sind 0,6 % der in Deutschland verkauften Rodentiziden. Andere Rodentizide sind in Brandenburg praktisch unbedeutend.

-

³⁹ Quelle: (BVL 2015a)

5 Zusammenfassung

- Mit der vorliegenden Erhebung konnten die im Jahr 2014 aus 22 von 30 Lager in 12 Landkreisen Brandenburgs in den Verkehr gebrachten Pflanzenschutzmittel erfasst werden. Zukäufe aus anderen Bundesländern, EU-Ländern, Internetkäufe oder Parallelhandel konnten mit der Erhebung nicht ausgewertet werden. Bei einer Beteiligung von über 2/3 der Handelsunternehmen sollten damit vorsichtig geschätzt etwa 70 % des getätigten Einkaufs der Betriebe erfasst worden sein. Mit Hinweis auf die angeführten weiteren, schwer schätzbaren Zukaufquellen ist damit etwas über die Hälfte der vermutlich eingesetzten Gesamtmengen an Präparaten erfasst worden. Ein Mengenvergleich über vorhandene Ackerflächen zu den ermittelten Zahlen des BVL (2,9 kg/ha Ackerfläche 2015, gegenüber 1,04 kg/ha Brandenburg 2014)) ist demnach nicht zulässig. Aussagekräftig und aufgrund des ermittelten Gesamtverbrauchs gut abgesichert sind hingegen die Relationen der Wirkstoffe und deren ablesbare Trends und Rangfolgen.
- Die für das Jahr 2014 erfasste Menge an in den Verkehr gebrachten PSM-Wirkstoffmengen lag deutlich über der Menge der letzten Erhebung von 2009 und wieder auf dem Niveau der vorherigen erfassten Wirkstoffmengen.
- Wie bei den vorherigen Erhebungen spielte 2014 die Wirkstoffgruppe Herbizide mit einem Anteil von 67 % der insgesamt erfassten in den Verkehr gebrachten Wirkstoffen die dominierende Rolle (im Bundesdurchschnitt beträgt der Anteil nur 59 %!). Die nächste bedeutende Wirkstoffgruppe, die Fungizide entsprachen 2014 mit 21 % den früheren Anteilen (2003: 19 %, 2009: 18 %). Der Einsatz von Wachstumsreglern, die mit einem Anteil von 9 % über dem Durchschnittswert von Deutschland (5 %) liegen, war ähnlich wie im Jahr 2009: (8 %). Wachstumsregulatoren hatten in der Vergangenheit auch höhere Anteile (z. B. 2003: 11 %).
- Die fünf in Brandenburg 2014 am häufigsten in Verkehr gebrachten Herbizid-Wirkstoffe

 Glyphosat, Isoproturon, Pendimethalin, S-Metolachlor und Terbuthylazin machten
 der Gesamtwirkstoffmenge aus. Der Anteil von Glyphosat war seit 1998/1999
 stetig angestiegen und stellt inzwischen das gebräuchlichste Herbizid mit 22%-Marktanteil dar, der von Isoproturon⁴⁰ ist dagegen abgesunken. Bei einigen Stoffen wie Metazachlor und Pendimethalin war der Anteil über die Jahre relativ konstant geblieben. Der Wirkstoff Bentazon in den ersten Erhebungen noch unter den Top Ten, hat bei den Erhebungen 2009 und 2014 weiter an Bedeutung verloren.
- Bei den Fungizidwirkstoffen hat sich das Wirkstoffspektrum gegenüber den Vorjahren weiter erhöht und ist im Gegensatz zu den anderen Wirkstoffmittelgruppen breiter gefächert. Mancozeb, das in den Vorjahren der am meisten verkaufte Fungizidwirkstoff war, wurde durch den Wirkstoff Tebuconazol als Spitzenreiter 2014 abgelöst. Fungizide auf Schwefel oder Kupferbasis haben im Gegensatz zum Bundesdurchschnitt in Brandenburg immer mehr an Bedeutung verloren.

⁴⁰ Zulassungsbeendung für Isoproturonhaltige Mittel sind seit dem 30.9.2016, http://www.bvl.bund.de/DE/04 Pflanzenschutzmittel/06 Fachmeldungen/2016/2016 06 22 Fa Widerruf Isoproturon Triasulfuron.html?nn=1471850

- Die in der Erhebung 2014 erfassten Verkaufsmengen an Wachstumsregulatoren enthielten 9 verschiedene Wirkstoffe, von denen einer, Chlormequat, wie schon 2009, allein zwei Drittel der Verkaufsmenge ausmachte. Der relativ neue Wirkstoff Mepiquat, der erstmalig 2009 erfasst wurde, konnte seinen Umsatz bedeutend steigern und hat damit erneut dem sonst auf Rang 2 liegenden Ethephon den Rang abgelaufen. Die Wirkstoffe Paclobutrazol, Maleinsäurehydrazid sind neu dazugekommen.
- Die mit einem Verkaufsanteil von nur 2 % in Brandenburg in der Erhebung 2014 erfassten Insektizide waren mit 42 verschiedenen Wirkstoffen vertreten. Bei den Insektiziden gab es wesentlich stärkere Veränderungen bei den Verkaufszahlen der einzelnen Insektizidwirkstoffen. Der 2009 zweithäufigste verwendete Insektizidwirkstoff Chlorpyrifos-methyl wurde 2014 nicht mehr verkauft. Dimethoat, ist wie die Jahre davor (außer 2009), der am meisten verkaufte Insektizidwirkstoff. Der 2002 zugelassene Wirkstoff Thiacloprid war der im Jahr 2014 am zweithäufigsten und 2009 der am häufigsten verkaufte Insektizidwirkstoff.
- 2014 spielten in der Gruppe der "Sonstigen Wirkstoffe" die Schneckenmittel (Molluskizide) die größte Rolle. Hier kam insbesondere der Wirkstoff Metaldehyd (knapp 2500 kg) zum Verkauf. Das macht etwa 10 % des bundesweiten Verkaufes aus und damit das Doppelte der bisher höchsten erfassten Menge von 2001. Methiocarb, ein insektizider und molluskizider Wirkstoff, war im Absatz 2014 mit rund 30 kg gegenüber den vorherigen Erhebungen weniger bedeutend.
- Bei den 2014 verkauften Mitteln gegen Nagetiere (Rodentizide) wurden die bisher höchsten verkauften Mengen in der Erhebungsreihe festgestellt und die Menge von 60,5 kg Rodentizidwirkstoffe von 1998/1999 deutlich übertroffen. Dabei spielte der Wirkstoff Zinkphosphid zu 99 % mit 92 verkauften kg die wichtigste Rolle als Wirkstoff gegen die Schadnager. Im Vergleich zum Bundesdurchschnitt wurden in Brandenburg in 2014 aber nur 0,5 % der in den Verkehr gebrachten Rodentizidwirkstoffe über die in der Erhebung erfassten Lager verkauft.

6 Quellenverzeichnis

- Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013): Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA 110(27): 11039-43.
- BMEL (2013): Nationale Aktionsplan zur nachhaltigen Anwendung von Pflanzenschutzmitteln (NAP) https://www.nap-pflanzenschutz.de/ (Stand 30.12.2016).
- BVL (2015a): Absatz von Pflanzenschutzmitteln in der Bundesrepublik Deutschland Ergebnisse der Meldungen gemäß § 19 Pflanzenschutzgesetz für das Jahr 2014. Broschüre des Bundesamtes für Verbraucherschutz und Lebensmittelsicherheit. August 2015. www.bvl.bund.de/psmstatistiken (Stand 30.12.2016).
- BVL (2015b): Liste der zugelassenen Pflanzenschutzmittel in Deutschland mit Informationen über beendete Zulassungen (Stand: Juli 2015). Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. www.bvl.bund.de/psmstatistiken (Stand 30.12.2016).
- BVL (2015c): BVL-Report 9.1, Berichte zu Pflanzenschutzmitteln, Jahresbericht Pflanzenschutz-Kontrollprogramm 2013 - Bund-Länder-Programm zur Überwachung des Inverkehrbringens und der Anwendung von Pflanzenschutzmitteln nach dem Pflanzenschutzgesetz. Springer; ISBN 978-3-319-11566-5.
- DB (2015): Vegetationskontrolle: freie Gleise für sicheren Betrieb. http://www.deutschebahn.com/de/nachhaltigkeit/oekologie/Naturschutz/11873926/naturschu
- Deutscher Bundestag (2009): "Einsatz von Pestiziden auf Strecken der Deutschen Bahn" –
 Drucksache 16/13918 Antwort der Bundesregierung auf die Kleine Anfrage der
 Abgeordneten Sylvia Kotting-Uhl, Winfried Hermann, Nicole Maisch, weiterer
 Abgeordneter und der Fraktion BÜNDNIS 90/DIE GRÜNEN.

 (http://dipbt.bundestag.de/dip21/btd/16/139/1613993.pdf (Stand 30.12.2016
- Hallmann CA, Foppen RP, van Turnhout CA, de Kroon H, Jongejans E (2014): Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. 2014 Jul 17:511(7509):341-3.
- Hofmann & Schlechtriemen (2014): Durchführung einer Bioindikation auf Pflanzenschutzmittelrückstände mittels Luftgüte-Rindenmonitoring, Passivsammlern und Vegetationsproben. TIEM Integrierte Umweltüberwachung GbR. www.lfu.brandenburg.de/media_fast/4055/fb_lugv-147.pdf
- LELF (2015): Jahresrückblick 2014 Gartenbau aus der Sicht des Pflanzenschutzes. LELF,
 Pflanzenschutzdienst, Referat 33.

 (http://www.isip.de/isip/servlet/page/deutschland/regionales/brandenburg/fachinfo_pflanzenschutzdienst/jahresrueckblick (Stand: 30.12.2016)

- LUA (2001): Pflanzenschutzmittel in der Umwelt Erhebung zu Wirkstoffmengen von Pflanzenschutzmitteln im Land Brandenburg. Studien und Tagungsberichte, Schriftenreihe des Landesumweltamts Brandenburg, Band 30 (ISSN 0948-0838).
- LUA (2003): Pflanzenschutzmittel in der Umwelt 2. Erhebung über Wirkstoffmengen von Pflanzenschutzmitteln im Land Brandenburg 2001 im Vergleich zu 1998/99. Studien und Tagungsberichte, Schriftenreihe des Landesumweltamts Brandenburg, Band 44 (ISSN 0948-0838).
- LUA (2005): Pflanzenschutzmittel in der Umwelt Erhebung von Pflanzenschutzmittel-Wirkstoffmengen im Land Brandenburg 2003 ein Vergleich zu 2001 und 1998/99. Studien und Tagungsberichte des Landesumweltamtes, Schriftenreihe des Landesumweltamts Brandenburg, Band 51.
- LUGV (2012): Pflanzenschutzmittel in der Umwelt Erhebung von Pflanzenschutzmittel-Wirkstoffmengen im Land Brandenburg für das Jahr 2009 und ein Vergleich zu den Recherchen von 1998/99, 2001 und 2003. Fachbeiträge des LUGV, Heft Nr. 124.
- MLUL (2015a): Agrarbericht des Landes Brandenburg 2015. Online. http://agrarbericht.brandenburg.de/cms/detail.php/bb1.c.366544.de (Stand: 30.12.2016)
- MLUL (2015b): Agrarbericht des Landes Brandenburg 2015. Online. http://agrarbericht.brandenburg.de/cms/detail.php/bb1.c.366546.de (Stand: 30.12.2016)
- Statistisches Bundesamt (2015): Land- und Forstwirtschaft, Fischerei, Landwirtschaftliche Bodennutzung und pflanzliche Erzeugung 2014. Fachserie 3 Reihe 3. Wiesbaden 2015.
- UBA (2014): http://www.umweltbundesamt.de/themen/chemikalien/pflanzenschutzmittel (Stand: 30.12.2016)
- van Lexmond MB, Bonmatin JM, Goulson D & Noome DA (2014): Worldwide integrated assessment on systemic pesticides. Global collapse of the entomofauna: exploring the role of systemic insecticides. Environmental Science and Pollution. Research International. 2015/01/01 00:00; 221-4.

7 Anlagen

Anlage 1 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Pestizidwirkstoffe	36
Anlage 2 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Herbizide (Wirkstoffe) - Ränge und Anteile im Wirkbereich	
Anlage 3 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Fungizide (Wirkstoffe) - Ränge un Anteile im Wirkbereich	
Anlage 4 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Insektizide (Wirkstoffe) - Ränge ur Anteile im Wirkbereich	
Anlage 5 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Wachstumsregulatoren (Wirkstoffe Ränge und Anteile im Wirkbereich	
Anlage 6 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten sonstigen Wirkstoffe - Anteile im Wirkbereich	62

Anlage 1 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Pestizidwirkstoffe

	2014			2009			2003			2001			1998/99			
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)												
Glyphosat	НВ	236421	1	22,2	127576	1	22,1	225302	1	18,2	206409	1	15,9	135931	2	12,2
Isoproturon	НВ	68520	2	6,4	65603	2	11,4	167878	2	13,5	177957	2	13,7	165010	1	14,9
Pendimethalin	НВ	65751	3	6,2	42533	3	7,4	54305,7	5	4,4	56499	5	4,3	48388,1	4	4,4
Chlormequat	WR	62224	4	5,8	26482	4	4,6	114786	3	9,3	141010	3	10,8	94340,3	3	8,5
S-Metolachlor	НВ	41160	5	3,9	25199	5	4,4									
Terbuthylazin	НВ	39148	6	3,7	25145	6	4,4	30527,2	10	2,5	21998	14	1,7	21555,9	11	1,9
Tebuconazol	FU	38170	7	3,6	10622	11	1,8	24658,4	13	2	28441	9	2,2	21061,9	12	1,9
Metazachlor	НВ	37304	8	3,5	24894	7	4,3	61042,1	4	4,9	62909	4	4,8	46942,7	5	4,2
Chlortoluron	НВ	29690	9	2,8	4455	22	0,8	2	201	<0,1	3041	56	0,2	11062,5	23	1
Mancozeb	FU	25117	10	2,4	14760	9	2,6	47443,6	6	3,8	32166	7	2,5	42523,9	6	3,8
Dimethenamid-P	НВ	20898	11	2	14799	8	2,6	1692,84	67	0,1						
Prochloraz	FU	17228	12	1,6	4032	26	0,7	2463,45	53	0,2	9858	26	0,8	12132	19	1,1

			2014			2009			2003			2001			1998/9	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
MCPA	НВ	16030	13	1,5	5616	19	1	27739	12	2,2	22682	13	1,7	23444	10	2,1
Metamitron	НВ	15668	14	1,5	7805	13	1,4	34472,1	7	2,8	30298	8	2,3	26604	9	2,4
Fenpropimorph	FU	15284	15	1,4	8330	12	1,4	16351,9	19	1,3	23091	12	1,8	14529,8	15	1,3
Chlorthalonil	FU	14695	16	1,4	6915	15	1,2	2270	56	0,2	5829,2	38	0,4	3401,6	53	0,3
Prothioconazol	FU	14430	17	1,4	3510	30	0,6	1623,71	69	0,1						
Diflufenican	НВ	14000	18	1,3	6830	16	1,2	7759,76	25	0,6	14167	19	1,1	11526,1	20	1
Epoxiconazol	FU	13329	19	1,3	4352	23	0,8	6160,02	31	0,5	10722	24	0,8	7009,6	33	0,6
Mepiquat	WR	13033	20	1,2	4917	20	0,9									
Prosulfocarb	НВ	12952	21	1,2	1163	53	0,2	16600	18	1,3	7200	31	0,6	4980	42	0,4
Pethoxamid	НВ	12589	22	1,2	1567	46	0,3									
Ethephon	WR	11531	23	1,1	4133	25	0,7	20185,1	14	1,6	42682	6	3,3	32412,4	8	2,9
Flufenacet	НВ	9754	24	0,9	3141	32	0,5	1420,09	74	0,1	3332,2	53	0,3	2277	65	0,2
Aclonifen	НВ	9363	25	0,9	13351	10	2,3	30327,9	11	2,4	21965	15	1,7	12799,2	18	1,2
Trinexapac-ethyl	WR	8116	26	0,8	2825	35	0,5	5709,45	33	0,5	5532,3	39	0,4	3667,4	51	0,3
Quinmerac	НВ	7143	27	0,7	3846	27	0,7	8759,09	23	0,7	11451	22	0,9	6935,6	35	0,6
Thiophanat-methyl	FU	6643	28	0,6	389	89	0,1	648,75	91	0,1	4113,2	48	0,3	758,8	94	0,1
Spiroxamine	FU	6470	29	0,6	4320	24	0,7	10428,7	22	0,8	8349	29	0,6	7167,1	32	0,6
Napropamid	НВ	6370	30	0,6	6801	17	1,2	47,25	154	<0,1	203,3	126	<0,1	775	93	0,1
Dimethachlor	НВ	6305	31	0,6	7283	14	1,3	5256,4	35	0,4	11257	23	0,9	11356,5	22	1
Dimethoat	IN	6214	32	0,6	868	66	0,2	16756,9	17	1,4	10640	25	0,8	7649,9	31	0,7
Bromoxynil	НВ	6133	33	0,6	2846	33	0,5	4505,37	37	0,4	5219,4	40	0,4	9072,8	27	0,8
Propamocarb	FU	5944	34	0,6	3545	29	0,6	3297,23	44	0,3	5999,4	37	0,5	4520,4	45	0,4
Isopyrazam	FU	5157	35	0,5												
Fluroxypyr	НВ	4911	36	0,5	1281	49	0,2	2235,99	57	0,2	2379,2	62	0,2	1761,5	69	0,2
Propyzamid	НВ	4846	37	0,5	310	96	0,1	569,83	98	<0,1	673,9	94	0,1	554,7	105	<0,1
Thiacloprid	IN	4721	38	0,4	2833	34	0,5	121,92	136	<0,1						
2,4-D	НВ	4591	39	0,4	617	80	0,1	1776,55	64	0,1	4100,5	49	0,3	4890,7	43	0,4
Propiconazol	FU	4345	40	0,4	2774	36	0,5	8023,74	24	0,6	8201	30	0,6	6891,8	36	0,6
Boscalid	FU	4334	41	0,4	4615	21	0,8	5811	32	0,5						

			2014			2009			2003			2001			1998/9	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Azoxystrobin	FU	4320	42	0,4	3502	31	0,6	19953,7	15	1,6	13790	21	1,1	9293,2	26	0,8
Bentazon	НВ	4269	43	0,4	5750	18	1	32919,9	8	2,7	27438	10	2,1	32537,2	7	2,9
Difenoconazol	FU	3916	44	0,4	740	74	0,1	2048,89	61	0,2	788,6	91	0,1	799,8	90	0,1
Bixafen	FU	3785	45	0,4												
Fenpropidin	FU	3686	46	0,3	3759	28	0,7	11112,6	20	0,9	14936	17	1,1	12811,2	17	1,2
Clopyralid	НВ	3575	47	0,3	610	81	0,1	370,7	109	<0,1	494,2	104	<0,1	560,1	104	0,1
Flurtamone	НВ	3281	48	0,3	1018	60	0,2	2905,38	46	0,2	8439	28	0,6	8612,7	29	0,8
Fluxapyroxad	FU	3228	49	0,3												
Pyraclostrobin	FU	3148	50	0,3	1293,0	48	0,2	2038,97	62	0,2						
Picoxystrobin	FU	3065	51	0,3	190,0	111	<0,1	1394,25	76	0,1						
Metrafenone	FU	2948	52	0,3	1104,2	55	0,2									
Etofenprox	IN	2859	53	0,3	510,5	83	0,1									
Schwefel	FU	2710	54	0,3	2397,5	37	0,4	10769,2	21	0,9	18888	16	1,5	10640,9	24	1
Deiquat	НВ	2593	55	0,2	989,9	62	0,2	6653,4	27	0,5	3407,5	52	0,3	3734	50	0,3
Metconazol	FU	2516	56	0,2	2084,9	40	0,4	2766,43	48	0,2	2732,1	60	0,2	1013,4	85	0,1
Metaldehyd	МО	2467	57	0,2	296,8	97	0,1	84,84	144	<0,1	1148,8	80	0,1	190,6	132	<0,1
Clomazone	НВ	2452	58	0,2	2184,1	38	0,4	1163,28	79	0,1	1629	73	0,1	1155,9	80	0,1
Ethofumesat	НВ	2421	59	0,2	1635,0	45	0,3	6231,89	29	0,5	7146	32	0,5	4533,5	44	0,4
Cyprodinil	FU	2332	60	0,2	656,9	78	0,1	2395,66	55	0,2	4926,9	41	0,4	2574,4	60	0,2
Dimoxystrobin	FU	2230	61	0,2	1682,9	43	0,3									
Fluazinam	FU	2049	62	0,2	842,2	68	0,1	3496,39	42	0,3	2166	65	0,2	1474,5	75	0,1
Propaquizafop	НВ	2045	63	0,2	918,1	65	0,2	1113,4	80	0,1	685,3	92	0,1	2398,2	62	0,2
Phenmedipham	НВ	1962	64	0,2	998,3	61	0,2	5148,74	36	0,4	4371,9	45	0,3	3081,6	55	0,3
Quizalofop-P	НВ	1925	65	0,2	327,7	95	0,1	577,09	97	<0,1	1149,1	79	0,1	914,6	86	0,1
Mesotrione	НВ	1827	66	0,2	1063,7	57	0,2	2601,6	50	0,2	594,8	98	<0,1			
Metribuzin	НВ	1761	67	0,2	1270,8	51	0,2	4128,76	38	0,3	3657,7	51	0,3	4001,1	48	0,4
Dicamba	НВ	1710	68	0,2	1094,9	56	0,2	662,55	90	0,1	181,5	129	<0,1	231,1	128	<0,1
Fluazifop-P	НВ	1582	69	0,1			<0,1	3325,24	43	0,3	2271	64	0,2	3066,4	57	0,3
Triadimenol	FU	1528	70	0,1	949,8	64	0,2	856,33	84	0,1	1512,9	74	0,1	1077,5	83	0,1

			2014			2009			2003			2001			1998/9	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	5.0 Anteil (%)									
Metiram	FU	1420	71	0,1	1142,9	54	0,2	6177,14	30	0,5	1127	82	0,1	2391,2	63	0,2
Dichlorprop	НВ	1419	72	0,1	1413,7	47	0,2	16950,6	16	1,4	14047	20	1,1	17153,4	14	1,5
Fluoxastrobin	FU	1212	73	0,1	679,4	77	0,1									
Prohexadion	WR	1196	74	0,1	703,3	75	0,1	2,72	197	<0,1						
Fluopyram	FU	1154	75	0,1												
Mecoprop-P	НВ	1134	76	0,1	150,4	120	<0,1	7235,25	26	0,6	14668	18	1,1	14338,1	16	1,3
Nicosulfuron	НВ	1085	77	0,1	972,3	63	0,2	1471,01	72	0,1	1238,7	76	0,1	589,4	100	0,1
Pymetrozin	IN	1001	78	0,1	3,5	180	<0,1	46,5	156	<0,1	45,4	164	<0,1	69,8	146	<0,1
Cyproconazol	FU	968	79	0,1	815,5	71	0,1	57,24	152	<0,1	2277	63	0,2	1792,3	68	0,2
Desmedipham	НВ	941	80	0,1	223,7	108	<0,1	633,69	95	0,1	531,9	100	<0,1	370,2	113	<0,1
Dimethomorph	FU	918	81	0,1	1646,2	44	0,3	2188,49	58	0,2	1222,2	78	0,1	1292	77	0,1
Alpha-Cypermethrin	IN	898	82	0,1	259,7	102	<0,1	1207,33	78	0,1	900,4	85	0,1	792,2	91	0,1
lambda-Cyhalothrin	IN	896	83	0,1	410,2	87	0,1	1240,54	77	0,1	445,6	108	<0,1	206,8	130	<0,1
Tribenuron	НВ	889	84	0,1	376,8	92	0,1	828,75	85	0,1	269,7	121	<0,1	232,3	127	<0,1
tau-Fluvalinat	IN	879	85	0,1	291,7	98	0,1				0,7	205	<0,1	327,1	121	<0,1
Paclobutrazol	WR	865	86	0,1												
Bifenox	НВ	836	87	0,1	703,0	76	0,1	1915	63	0,2	3008,3	57	0,2	6198,6	37	0,6
Picolinafen	НВ	834	88	0,1	98,0	127	<0,1	83,7	146	<0,1	62,4	152	<0,1			
Proquinazid	FU	765	89	0,1	92,6	130	<0,1									
Cyazofamid	FU	732	90	0,1	408,9	88	0,1	226,32	119	<0,1						
Pinoxaden	НВ	723	91	0,1	256,3	103	<0,1									
Beflubutamid	НВ	691	92	0,1	231,8	106	<0,1	1731,53	65	0,1						
Chloridazon	НВ	666	93	0,1	846,8	67	0,1	2999,7	45	0,2	4283,7	46	0,3	3869,4	49	0,3
Mandipropamid	FU	650	94	0,1	235,2	105	<0,1									
Cymoxanil	FU	566	95	0,1	189,9	112	<0,1	547,38	100	<0,1	426,8	110	<0,1	594,2	99	0,1
Tritosulfuron	НВ	552	96	0,1	741,5	73	0,1									
Tolclofos-methyl	FU	548	97	0,1	367,0	93	0,1	1048,5	81	0,1	566,5	99	<0,1	876	88	0,1
Pirimicarb	IN	527	98	<0,1	528,6	82	0,1	1510,45	71	0,1	1887,6	69	0,1	1559,8	73	0,1
Tembotrione	НВ	515	99	<0,1	117,4	124	<0,1									

			2014			2009			2003			2001			1998/9	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Foramsulfuron	НВ	451	100	<0,1	817,7	70	0,1	157,02	127	<0,1						
Fluopicolide	FU	450	101	<0,1	377,1	91	0,1									
Lenacil	НВ	436	102	<0,1												
Pyridat	НВ	425	103	<0,1	94,5	128	<0,1	1631,15	68	0,1	8694	27	0,7	8615,1	28	0,8
Thifensulfuron	НВ	423	104	<0,1	812,6	72	0,1	1708,64	66	0,1	1398,8	75	0,1	3076,2	56	0,3
Captan	FU	415	105	<0,1	104,0	125	<0,1	2095,17	60	0,2	851,2	88	0,1	1699,6	71	0,2
Topramezone	НВ	413	106	<0,1	470,2	84	0,1									
beta-Cyfluthrin	IN	410	107	<0,1	146,1	121	<0,1	59,35	151	<0,1	321,6	119	<0,1	138,2	136	<0,1
Paraffinöle	IN	405	108	<0,1												
Cypermethrin	IN	401	109	<0,1			<0,1	16,8	170	<0,1	451,8	107	<0,1	365,7	114	<0,1
Fosetyl	FU	394	110	<0,1	2121,6	39	0,4	2157,24	59	0,2	2461,5	61	0,2	1313,8	76	0,1
Pyrimethanil	FU	392	111	<0,1	141,6	122	<0,1	641,4	94	0,1	261,4	122	<0,1	517	108	<0,1
Cyflufenamid	FU	339	112	<0,1	23,9	162	<0,1									
Flupyrsulfuronmethyl	НВ	334	113	<0,1	208,3	109	<0,1	78,19	147	<0,1	57,9	155	<0,1	6,4	185	<0,1
Eisen-II-sulfat	НВ	325	114	<0,1			<0,1	12,83	175	<0,1						
Metalaxyl-M	FU	319	115	<0,1	267,5	101	<0,1	579,46	96	<0,1	348,2	117	<0,1	353,6	117	<0,1
Acetamiprid	IN	316	116	<0,1	2,4	184	<0,1									
Indoxacarb	IN	307	117	<0,1	2,6	183	<0,1	9,08	181	<0,1	2,3	196	<0,1			
Glufosinate	НВ	301	118	<0,1	453,7	86	0,1	7,54	184	<0,1	1233,3	77	0,1	1559,9	72	0,1
Picloram	НВ	290	119	<0,1	93,7	129	<0,1									
Dithianon	FU	270	120	<0,1	91,0	131	<0,1	25	167	<0,1	909	84	0,1	2124,1	67	0,2
Triclopyr	НВ	270	121	<0,1	80,2	136	<0,1				42,2	166	<0,1	119,5	138	<0,1
zeta-Cypermethrin	IN	267	122	<0,1	43,0	152	<0,1	0,05	218	<0,1						
Trifloxystrobin	FU	251	123	<0,1	1039,4	58	0,2	2764,89	49	0,2	2909,3	58	0,2			
Kresoxim-methyl	FU	234	124	<0,1	1975,5	41	0,3	2861,97	47	0,2	6663,1	35	0,5	5103,1	41	0,5
Esfenvalerat	IN	233	125	<0,1	187,4	114	<0,1	272,79	117	<0,1	40,6	167	<0,1	11,3	178	<0,1
Kupferhydroxid	FU	232	126	<0,1	158,0	118	<0,1	5432,39	34	0,4	1688,5	71	0,1	2572,9	61	0,2
Flumioxazin	НВ	228	127	<0,1	31,5	159	<0,1									
Fluquinconazol	FU	197	128	<0,1	272,7	100	<0,1	566,16	99	<0,1	3233,3	54	0,2	140,1	135	<0,1

			2014			2009			2003			2001			1998/	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Ametoctradin	FU	196	129	<0,1												
Florasulam	НВ	189	130	<0,1	60,8	145	<0,1	126,63	135	<0,1	61,3	154	<0,1			
Ioxynil	НВ	178	131	<0,1	1031,2	59	0,2	6564,65	28	0,5	6771	34	0,5	11362,6	21	1
Famoxadone	FU	177	132	<0,1	182,3	115	<0,1	537,39	101	<0,1	495,4	103	<0,1			
Pencycuron	FU	174	133	<0,1	103,5	126	<0,1	395,23	108	<0,1	385,5	113	<0,1	528,6	107	<0,1
Haloxyfop-P	НВ	170	134	<0,1	-2,1	215	<0,1	792,9	87	0,1	441,7	109	<0,1	333,2	119	<0,1
Flutolanil	FU	168	135	<0,1												
Metsulfuron	НВ	154	136	<0,1	90,5	132	<0,1	367,25	111	<0,1	165,3	130	<0,1	383,9	112	<0,1
Maneb	FU	154	137	<0,1	365,8	94	0,1	3823,48	40	0,3	4624	43	0,4	9994,9	25	0,9
Pirimiphos-methyl	IN	154	138	<0,1	637,5	79	0,1	332,01	113	<0,1	827	89	0,1	572,1	102	0,1
Carfentrazon	НВ	154	139	<0,1	85,6	135	<0,1	128,74	133	<0,1	96,3	140	<0,1	18	173	<0,1
Rimsulfuron	НВ	149	140	<0,1	60,8	144	<0,1	217,56	121	<0,1	277,8	120	<0,1	391,2	111	<0,1
Cycloxydim	НВ	132	141	<0,1	156,5	119	<0,1	1557,6	70	0,1	1741,5	70	0,1	24	168	<0,1
Triflusulfuron	НВ	128	142	<0,1	56,0	149	<0,1	32,89	164	<0,1	92,4	143	<0,1	36,7	157	<0,1
Trisulfuron	НВ	128	143	<0,1			<0,1	15	171	<0,1						
Maleinsäurehydrazid	WR	126	144	<0,1												
Dodin	FU	118	145	<0,1												
Pyroxsulam	НВ	99	146	<0,1	63,1	143	<0,1									
Sulfosulfuron	НВ	97	147	<0,1	31,6	158	<0,1	132,16	132	<0,1	91,6	144	<0,1			
Fludioxonil	FU	96	148	<0,1	120,5	123	<0,1	502,42	104	<0,1	464,1	106	<0,1	191,7	131	<0,1
Zinkphosphid	RO	92	149	<0,1	0,7	199	<0,1	6,21	186	<0,1	15,2	183	<0,1	4,9	187	<0,1
Aminopyralid	НВ	85	150	<0,1	8,3	170	<0,1									
Deltamethrin	IN	85	151	<0,1	86,9	134	<0,1	120,23	137	<0,1	20,8	178	<0,1	789,4	92	0,1
Silthiofam	FU	83	152	<0,1	3,8	178	<0,1	6,88	185	<0,1	95	141	<0,1			
Triazoxid	FU	76	153	<0,1			<0,1				20	179	<0,1			
Triazoxide	FU	76	154	<0,1	56,9	148	<0,1									
Propoxycarbazone	НВ	69	155	<0,1	37,9	156	<0,1	117,56	138	<0,1						
Iprodion	FU	65	156	<0,1	201,0	110	<0,1	442,36	107	<0,1	2890,7	59	0,2	2817,3	59	0,3
Penoxsulam	НВ	65	157	<0,1	57,8	147	<0,1									

			2014			2009			2003			2001			1998/9	9 9
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Prosulfuron	НВ	64	158	<0,1	160,5	117	<0,1	9,75	180	<0,1	8,1	190	<0,1	18,8	171	<0,1
Iodosulfuron	НВ	59	159	<0,1	67,7	141	<0,1	98,64	142	<0,1	94,9	142	<0,1			
Zoxamide	FU	58	160	<0,1	87,9	133	<0,1	296,3	115	<0,1						
Fenoxaprop-p	НВ	52	161	<0,1	2,3	185	<0,1	137,61	131	<0,1	187,5	128	<0,1	305,7	123	<0,1
Clothianidin	IN	47	162	<0,1	41,5	154	<0,1									
Triticonazol	FU	46	163	<0,1	77,6	137	<0,1	1,87	204	<0,1	31,3	171	<0,1	20,6	169	<0,1
Carbetamid	НВ	40	164	<0,1			<0,1	646,5	93	0,1	958,3	83	0,1	3477,5	52	0,3
Methiocarb	IN, MO	39	165	<0,1	2,8	182	<0,1	498,66	105	<0,1	100,4	139	<0,1	92,9	140	<0,1
Aluminiumkaliumsulfat	ВА	36	166	<0,1												
Isoxaben	НВ	35	167	<0,1	28,0	160	<0,1	52	153	<0,1	40,6	168	<0,1	68,7	147	<0,1
gamma-Cyhalothrin	IN	32	168	<0,1												
Methoxyfenozide	IN	30	169	<0,1	3,8	177	<0,1	138,72	130	<0,1						
Amidosulfuron	НВ	30	170	<0,1	59,1	146	<0,1	184,05	122	<0,1	201,9	127	<0,1	361,9	115	<0,1
Imazamox	НВ	28	171	<0,1												
Benthiavalicarb	FU	28	172	<0,1	16,5	164	<0,1									
Clethodim	НВ	23	173	<0,1	76,4	138	<0,1	151,43	128	<0,1	212,3	124	<0,1			
Imazalil	FU	23	174	<0,1	0,9	197	<0,1	12,38	177	<0,1	65,8	150	<0,1	170,8	134	<0,1
Tepraloxydim	НВ	22	175	<0,1	7,9	172	<0,1	3	195	<0,1						
Mesosulfuron	НВ	22	176	<0,1	8,0	171	<0,1	3,66	192	<0,1						
Fuberidazol	FU	20	177	<0,1	1,1	193	<0,1	10,9	179	<0,1	48,7	161	<0,1	28,2	165	<0,1
Dimefuron	НВ	20	178	<0,1			<0,1	323,25	114	<0,1	479,5	105	<0,1	1738,8	70	0,2
Fenhexamid	FU	19	179	<0,1	68,9	140	<0,1	370,2	110	<0,1	393,5	112	<0,1	305	124	<0,1
Flusilazol	FU	19	180	<0,1	831,6	69	0,1	1403	75	0,1	1997,3	68	0,2	2170,6	66	0,2
Benalaxyl-M	FU	18	181	<0,1												
Folpet	FU	18	182	<0,1	24,4	161	<0,1	772	88	0,1	155,4	131	<0,1			
Triasulfuron	НВ	17	183	<0,1	3,9	176	<0,1	31,89	165	<0,1	8,6	189	<0,1	4,7	188	<0,1
Quinoxyfen	FU	16	184	<0,1	11,3	165	<0,1	443,76	106	<0,1	1678,5	72	0,1	908	87	0,1
Chlorpropham	WR	16	185	<0,1	45,0	151	<0,1	76,25	149	<0,1	57	157	<0,1	40,3	156	<0,1

			2014			2009			2003			2001			1998/	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Abamectin	IN	15	186	<0,1	1,0	194	<0,1	2,12	199	<0,1	0,9	202	<0,1	0,5	202	<0,1
Myclobutanil	FU	13	187	<0,1	5,4	175	<0,1	279,26	116	<0,1	68,1	149	<0,1	70,1	145	<0,1
Chlorantraniliprole	IN	13	188	<0,1	10,8	166	<0,1									
Fenpyroximat	IN	13	189	<0,1	46,2	150	<0,1	38,11	160	<0,1	21	177	<0,1	3,1	195	<0,1
Clodinafop-Propagyl	НВ	12	190	<0,1	8,5	169	<0,1	45,134	157	<0,1	78,4	146	<0,1	1112,8	81	0,1
Amisulbrom	FU	12	191	<0,1												
Flonicamid	IN	10	192	<0,1												
Valifenalate	FU	10	193	<0,1												
Hexythiazox	IN	9	194	<0,1	42,5	153	<0,1	13,6	173	<0,1	0,8	203	<0,1	4,2	191	<0,1
Penconazol	FU	9	195	<0,1	2,3	186	<0,1	33,9	163	<0,1	8,7	188	<0,1	18,1	172	<0,1
Thiametoxam	IN	8	196	<0,1	8,8	168	<0,1									
Bacillus thuringiensis	IN	7	197	<0,1	0,7	198	<0,1	5,12	187	<0,1	37,2	170	<0,1	36,4	158	<0,1
Sulcotrione	НВ	6	198	<0,1	172,5	116	<0,1	731,1	89	0,1	2134,8	66	0,2	2945,5	58	0,3
Coniothyrium minitans	FU	5	199	<0,1	1,6	189	<0,1	103	140	<0,1	40	169	<0,1			
Metosulam	НВ	5	200	<0,1	9,3	167	<0,1	36,29	162	<0,1	57,8	156	<0,1	136,3	137	<0,1
Flazasulfuron	НВ	5	201	<0,1	0,7	200	<0,1									
Metaflumizone	IN	4	202	<0,1	34,9	157	<0,1									
Imazosulfuron	НВ	4	203	<0,1	3,1	181	<0,1									
Acequinocyl	IN	4	204	<0,1	1,5	190	<0,1									
Fipronil	IN	3	205	<0,1												
Bifenazate	IN	3	206	<0,1												
Eisen-III-phosphat	МО	3	207	<0,1			<0,1	5,11	188	<0,1						
Imidacloprid	IN	2	208	<0,1	73,1	139	<0,1	262,84	118	<0,1	49,2	160	<0,1	185,8	133	<0,1
Cyromazine	IN	2	209	<0,1												
Fenamidone	FU	2	210	<0,1			<0,1	42	159	<0,1						
Pyraflufen	НВ	2	211	<0,1	6,0	173	<0,1									
Adoxophyes orana GV	IN	2	212	<0,1												
Fenoxycarb	IN	1	213	<0,1	6,0	174	<0,1	37,8	161	<0,1	116,6	133	<0,1	30,1	164	<0,1
Iprovalicarb	FU	1	214	<0,1												

			2014			2009			2003			2001			1998/9	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Calciumphosphid	RO	1	215	<0,1	0,2	203	<0,1	8,63	183	<0,1	13,7	185	<0,1	2,8	196	<0,1
Spirotetramat	IN	1	216	<0,1												
Spirodiclofen	IN	1	217	<0,1	1,9	188	<0,1									
Tebufenpyrad	IN	1	218	<0,1			<0,1	12,5	176	<0,1	18,2	180	<0,1	9,6	180	<0,1
6-Benzyladenin	WR	1	219	<0,1												
Azadirachtin	IN	0,42	220	<0,1	0,0	208	<0,1	2,09	200	<0,1	2,1	197	<0,1			
Pyrethrin	IN	0,26	221	<0,1	0,1	206	<0,1	4,3	190	<0,1						
Metobromuron	НВ	0,25	222	<0,1			<0,1	945	82	0,1	677,5	93	0,1	3293,4	54	0,3
Spinosad	IN	0,24	223	<0,1			<0,1	1,12	209	<0,1						
Coumatetralyl	RO	0,10	224	<0,1	0,0	209	<0,1	0,18	215	<0,1						
Brodifacoum	RO	0,01	225	<0,1	0,0	211	<0,1	0,04	220	<0,1						
Flocoumafen	RO	0,01	226	<0,1	0,0	210	<0,1	0,04	221	<0,1						
Sulfachinoxalin	RO	0,01	227	<0,1	0,0	214	<0,1	0,34	213	<0,1	0,07	207	<0,1	0,1	208	<0,1
Difenacoum	RO	0,00	228	<0,1	0,0	212	<0,1	0,06	217	<0,1						
Difethialon	RO	0,00	229	<0,1	0,0	213	<0,1	0,01	226	<0,1						
Fluazifop	НВ				1732,4	42	0,3									
Dazomet	NE				1274,0	50	0,2	2502,6	52	0,2	4074,2	50	0,3	1223,2	79	0,1
Chlorpyrifos-methyl	IN				1201,5	52	0,2									
Chlorpyrifos	IN				469,0	85	0,1	1,77	205	<0,1						
Carbendazim	FU				380,0	90	0,1	825,29	86	0,1	3053,9	55	0,2	5653,8	39	0,5
Dimethenamid	НВ				277,2	99	<0,1									
Linuron	НВ				250,3	104	<0,1	84,25	145	<0,1						
Bifenthrin	IN				230,5	107	<0,1									
Kupferoxychlorid	FU				187,9	113	<0,1	3503,91	41	0,3	4232,8	47	0,3	6949,7	34	0,6
Mineralöle	IN				66,1	142	<0,1	892,84	83	0,1	6880,6	33	0,5	4069,2	46	0,4
Rapsöl	IN				41,5	155	<0,1	165,44	126	<0,1	889	86	0,1	561,3	103	0,1
Cinidon-ethyl	НВ				21,9	163	<0,1	534,92	102	<0,1	622,3	96	<0,1	576	101	0,1
Flurochloridon	НВ				3,8	179	<0,1	127,5	134	<0,1	150,1	132	<0,1	451,4	110	<0,1
Metalaxyl	FU				2,3	187	<0,1	107	139	<0,1	25,7	175	<0,1	476,6	109	<0,1

			2014			2009			2003			2001			1998/	9 9
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
(Z)-9-Dodecen-1-yl-acetate	AT				1,4	191	<0,1									
(E,Z)-7,9-Dodecadien-1-yl acetate	AT				1,3	192	<0,1									
Benzoesäure	ВА				0,9	195	<0,1									
Streptomycin	ВА				0,9	196	<0,1									
Aluminiumphosphid	RO				0,6	201	<0,1	12,88	174	<0,1	14,8	184	<0,1	52,5	152	<0,1
(E,E)-8,10-Dodecadien-1-ol	AT				0,2	202	<0,1									
Milbemectin	IN				0,1	204	<0,1									
Dichlorvos	IN				0,1	205	<0,1	2,88	196	<0,1	52,1	159	<0,1	51,1	153	<0,1
Chlorphacinon	RO				0,0	207	<0,1	0,03	222	<0,1	0,43	206	<0,1	0,1	207	<0,1
Metolachlor	НВ							31019,4	9	2,5	23520	11	1,8	18113	13	1,6
Trifluralin	НВ							4039,2	39	0,3	2030	67	0,2	8001,6	30	0,7
Carboxin	FU							2509,6	51	0,2	4434,5	44	0,3	5621,1	40	0,5
Tolyfluanid	FU							2445,47	54	0,2	1128,2	81	0,1	4	192	<0,1
Methamidophos	IN							1429,93	73	0,1	367,4	114	<0,1	1478,6	74	0,1
Vinclozolin	FU							648,75	92	0,1	4671,1	42	0,4	1048,3	84	0,1
Oxydemeton-methyl	IN							520,21	103	<0,1	635,5	95	<0,1	718,7	95	0,1
Propineb	FU							336,18	112	<0,1	259,3	123	<0,1	1286,5	78	0,1
Diuron	НВ							225,79	120	<0,1	505	101	<0,1	623,1	97	0,1
Amitrol	НВ							184	123	<0,1	108	135	<0,1	210,7	129	<0,1
Bitertanol	FU							177,21	124	<0,1	45	165	<0,1	61,8	150	<0,1
Calciumcarbid	RO							172	125	<0,1						
Tebufenozid	IN							142,08	129	<0,1	105,6	137	<0,1	71,1	144	<0,1
Chlorfenvinphos	IN							99,6	141	<0,1	83,3	145	<0,1	31	162	<0,1
Paraquat	НВ							89,6	143	<0,1	64,9	151	<0,1	41	155	<0,1
Parathion	IN							78,17	148	<0,1	808,1	90	0,1	608,6	98	0,1
Methidathion	IN							75,2	150	<0,1	23,6	176	<0,1	0,8	200	<0,1
Parathion-methyl	IN							46,98	155	<0,1	204,5	125	<0,1	85,4	142	<0,1
Flutriafol	FU							45,1	158	<0,1	28,8	172	<0,1	1,5	199	<0,1

			2014			2009			2003			2001			1998/9	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Thiram	FU							25,64	166	<0,1	116,3	134	<0,1	359	116	<0,1
Benomyl	FU							25	168	<0,1	409,3	111	<0,1	552,3	106	<0,1
Benfuracarb	IN							23	169	<0,1	606,6	97	<0,1	246	126	<0,1
Guazatin	FU							15	172	<0,1	365	115	<0,1	352	118	<0,1
Kali-Seife	IN							11,91	178	<0,1						
Cloquintocet-mexyl	НВ							8,95	182	<0,1	15,5	182	<0,1	83,2	143	<0,1
Carbofuran	IN							5	189	<0,1	3	194	<0,1	17	174	<0,1
Phoxim	IN							3,83	191	<0,1	10,1	187	<0,1	13,3	176	<0,1
Naphthyl-Acetamid (NAD)	WR							3,44	193	<0,1						
Fenarimol	FU							3,29	194	<0,1	48,1	162	<0,1	31,8	161	<0,1
Fluoroglycofen	НВ							2,25	198	<0,1	27,9	174	<0,1	65,7	148	<0,1
Dichlofluanid	FU							2	202	<0,1	332,9	118	<0,1	6192,1	38	0,6
Eisen-III-sulfat	НВ							1,9	203	<0,1						
Fenazaquin	IN							1,2	206	<0,1	1,8	198	<0,1	4,6	189	<0,1
Buprofezin	IN							1,13	207	<0,1	1,1	200	<0,1	2,6	197	<0,1
Quinoclamin	НВ							1,13	208	<0,1	28,8	173	<0,1			
Lecithin	FU							0,97	210	<0,1						
Azamethiphos	IN							0,7	211	<0,1						
Kupferoctanoat	FU							0,45	212	<0,1						
Methomyl	IN							0,28	214	<0,1						
Teflubenzuron	IN							0,15	216	<0,1				0,2	206	<0,1
Sulfonamide	RO							0,05	219	<0,1						
Warfarin	RO							0,03	223	<0,1				0,1	209	<0,1
Cholecalciferol	RO							0,02	224	<0,1						
Dehydrocholesterol	RO							0,02	225	<0,1						
Permethrin	IN							0,01	227	<0,1	3,5	193	<0,1	9,3	182	<0,1
Tetramethrin	IN							0,01	228	<0,1						
Flurprimidol	WR							0,01	229	<0,1						

			2014			2009			2003			2001			1998/9	99
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Fenpiclonil	FU										6120,4	36	0,5	62	149	<0,1
Fentin-hydroxid	FU										870,4	87	0,1	1106,1	82	0,1
Terbutryn	НВ										503,4	102	<0,1	4007,3	47	0,4
Pyrazophos	FU										362,8	116	<0,1	2330,9	64	0,2
Propoxur	IN										107,7	136	<0,1	30,8	163	<0,1
Fenthion	IN										105,5	138	<0,1	12,6	177	<0,1
Carbosulfan	IN										69,2	147	<0,1			
Bendiocarb	IN										68,4	148	<0,1			
Triforine	FU										61,4	153	<0,1	826,7	89	0,1
Fenvalerat	IN										55	158	<0,1	26	167	<0,1
Thiodicarb	IN										47,6	163	<0,1			
Clofentezin	IN										17,5	181	<0,1	18,8	170	<0,1
Diethofencarb	FU										11,5	186	<0,1	4,3	190	<0,1
Amitraz	IN										8	191	<0,1	9	183	<0,1
Dichlobenil	НВ										6,2	192	<0,1	55,9	151	<0,1
Sulfotep	IN										3	195	<0,1	91,7	141	<0,1
Diflubenzuron	IN										1,4	199	<0,1	260,8	125	<0,1
Fenbuconazol	FU										1	201	<0,1	95,8	139	<0,1
Terbufos	IN										0,8	204	<0,1	0,2	205	<0,1
Bromuconazol	FU													683,8	96	0,1
EPTC	НВ													328,5	120	<0,1
Cyanamid	НВ													322	122	<0,1
Isoxaflutole	НВ													45,8	154	<0,1
Fenfuram	FU													35	159	<0,1
Tridemorph	FU													33,8	160	<0,1
Sethoxydim	НВ													26,6	166	<0,1
Fenbuconazole	FU													16,5	175	<0,1
Oxadixyl	FU													10	179	<0,1
Anilazine	FU													9,6	181	<0,1

			2014			2009			2003			2001			1998/9	3 9
Wirkstoff	Wirkbereich	Absatz kg	Rang	Anteil (%)	Absatz kg	Rang	Anteil (%)									
Triallat	НВ													7,2	184	<0,1
Propham	НВ													6,2	186	<0,1
Simazine	НВ													3,3	193	<0,1
Azocyclotin	IN													3,3	194	<0,1
Procymidone	FU													2,1	198	<0,1
Pyrifenox	FU													0,6	201	<0,1
Fenpropathrin	IN													0,4	203	<0,1
Triadimefon	FU													0,3	204	<0,1

Anlage 2 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Herbizide (Wirkstoffe) - Ränge und Anteile im Wirkbereich

		2014			2009			2003			2001			1998	/99
Herbizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Glyphosat	236421	1	33	127576	1	30,1	225302	1	26,9	206409	1	25,3	135931	2	18,7
Isoproturon	68520	2	9,6	65603	2	15,5	167878	2	20,1	177957	2	21,8	165010	1	22,7
Pendimethalin	65751	3	9,2	42533	3	10	54306	4	6,5	56499	4	6,9	48388	3	6,5
S-Metolachlor	41160	4	5,7	25199	4	5,9									6,7
Terbuthylazin	39148	5	5,5	25145	5	5,9	30527	8	3,6	21998	9	2,7	21556	8	3,7
Metazachlor	37304	6	5,2	24894	6	5,9	61042	3	7,3	62909	3	7,7	46943	4	4,5
Chlortoluron	29690	7	4,1	4455	15	1	2	84	<0,1	3041	28	0,4	11063	16	2
Dimethenamid-P	20898	8	2,9	14799	7	3,5	1693	33	0,2						2,5
MCPA	16030	9	2,2	5616	14	1,3	27739	10	3,3	22682	8	2,8	23444	7	1,6
Metamitron	15668	10	2,2	7805	9	1,8	34472	5	4,1	30298	5	3,7	26604	6	1,8
Diflufenican	14000	11	2	6830	11	1,6	7760	14	0,9	14167	12	1,7	11526,1	13	2,4
Prosulfocarb	12952	12	1,8	1163	26	0,3	16600	12	2	7200	18	0,9	4980	23	1,2
Pethoxamid	12589	13	1,8	1567	22	0,4									0,6
Flufenacet	9754	14	1,4	3141	17	0,7	1420	37	0,2	3332	27	0,4	2277	37	1,6
Aclonifen	9363	15	1,3	13351	8	3,1	30328	9	3,6	21965	10	2,7	12799	12	3
Quinmerac	7143	16	1	3846	16	0,9	8759	13	1	11451	14	1,4	6936	21	0,5
Napropamid	6370	17	0,9	6801	12	1,6	47	71	<0,1	203	55	<0,1	775	44	0,7
Dimethachlor	6305	18	0,9	7283	10	1,7	5256	19	0,6	11257	15	1,4	11357	15	3,2
Bromoxynil	6133	19	0,9	2846	18	0,7	4505	21	0,5	5219	21	0,6	9073	17	0,6
Fluroxypyr	4911	20	0,7	1281	24	0,3	2236	28	0,3	2379	30	0,3	1762	38	0,4
Propyzamid	4846	21	0,7	310	46	0,1	570	48	0,1	674	43	0,1	555	49	0,1
2,4-D	4591	22	0,6	617	40	0,1	1777	30	0,2	4101	24	0,5	4891	24	0,5
Bentazon	4269	23	0,6	5750	13	1,4	32920	6	3,9	27438	6	3,4	32537	5	1
Clopyralid	3575	24	0,5	610	41	0,1	371	50	<0,1	494	49	0,1	560	48	<0,1

		2014			2009			2003			2001			1998	/99
Herbizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Flurtamone	3281	25	0,5	1018	30	0,2	2905	26	0,3	8439	17	1	8613	19	0,7
Deiquat	2593	26	0,4	990	32	0,2	6653	16	0,8	3408	26	0,4	3734	29	0,4
Clomazone	2452	27	0,3	2184	19	0,5	1163	38	0,1	1629	35	0,2	1156	41	1,6
Ethofumesat	2421	28	0,3	1635	21	0,4	6232	18	0,7	7146	19	0,9	4534	25	1,3
Rethofumesat	2421	28	0,3				34	74	<0,1						
Propaquizafop	2045	30	0,3	918	34	0,2	1113	39	0,1	685	41	0,1	2398	36	1,2
Phenmedipham	1962	31	0,3	998	31	0,2	5149	20	0,6	4372	22	0,5	3082	32	
Quizalofop-P	1925	32	0,3	328	45	0,1	577	47	0,1	1149	39	0,1	915	43	0,5
Mesotrione	1827	33	0,3	1064	28	0,3	2602	27	0,3	595	45	0,1			0,2
Metribuzin	1761	34	0,2	1271	25	0,3	4129	22	0,5	3658	25	0,4	4001	27	0,5
Dicamba	1710	35	0,2	1095	27	0,3	663	44	0,1	182	58	<0,1	231	60	
Fluazifop-P	1582	36	0,2				3325	24	0,4	2271	31	0,3	3066	34	
Dichlorprop	1419	37	0,2	1414	23	0,3	16951	11	2	14047	13	1,7	17153	10	1,1
Mecoprop-P	1134	38	0,2	150	56	<0,1	7235	15	0,9	14668	11	1,8	14338	11	<0,1
Nicosulfuron	1085	39	0,2	972	33	0,2	1471	36	0,2	1239	37	0,2	589	46	
Desmedipham	941	40	0,1	224	51	0,1	634	46	0,1	532	46	0,1	370	53	0,1
Tribenuron	889	41	0,1	377	44	0,1	829	41	0,1	270	53	<0,1	232	59	<0,1
Bifenox	836	42	0,1	703	39	0,2	1915	29	0,2	3008	29	0,4	6199	22	0,3
Picolinafen	834	43	0,1	98	58	<0,1	84	68	<0,1	62	68	<0,1			
Pinoxaden	723	44	0,1	256	48	0,1									0,1
Beflubutamid	691	45	0,1	232	50	0,1	1732	31	0,2						0,1
Chloridazon	666	46	0,1	847	35	0,2	3000	25	0,4	4283,7	23	0,5	3869,4	28	<0,1
Tritosulfuron	552	47	0,1	741	38	0,2									0,2
Tembotrione	515	48	0,1	117	57	<0,1									
Foramsulfuron	451	49	0,1	818	36	0,2	157	57	<0,1						0,1
Lenacil	436	50	0,1												
Pyridat	425	51	0,1	95	59	<0,1	1631	34	0,2	8693,8	16	1,1	8615,1	18	<0,1
Thifensulfuron	423	52	0,1	813	37	0,2	1709	32	0,2	1398,8	36	0,2	3076,2	33	0,3

		2014			2009			2003			2001			1998	/99
Herbizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Topramezone	413	53	0,1	470	42	0,1									<0,1
Flupyrsulfuronmethyl	334	54	<0,1	208	52	<0,1	78	69	<0,1	57,9	70	<0,1	6,4	76	0,2
Eisen-II-sulfat	325	55	<0,1				13	77	<0,1						
Glufosinate	301	56	<0,1	454	43	0,1	8	80	<0,1	1233,3	38	0,2	1559,9	40	0,4
Picloram	290	57	<0,1	94	60	<0,1									
Triclopyr	270	58	<0,1	80	63	<0,1				42,2	72	<0,1	119,5	63	
Flumioxazin	228	59	<0,1	31	74	<0,1									
Florasulam	189	60	<0,1	61	68	<0,1	127	63	<0,1	61,3	69	<0,1			
loxynil	178	61	<0,1	1031	29	0,2	6565	17	0,8	6771	20	0,8	11363	14	0,9
Haloxyfop-P	170	62	<0,1	-2,1	88	<0,1	793	42	0,1	441,7	51	0,1	333,2	55	
Metsulfuron	154	63	<0,1	91	61	<0,1	367	51	<0,1	165,3	59	<0,1	383,9	52	<0,1
Carfentrazon	154	64	<0,1	86	62	<0,1	129	61	<0,1	96,3	62	<0,1	18	74	0,1
Rimsulfuron	149	65	<0,1	61	67	<0,1	218	54	<0,1	277,8	52	<0,1	391,2	51	
Cycloxydim	132	66	<0,1	157	55	<0,1	1558	35	0,2	1741,5	34	0,2	24	72	<0,1
Triflusulfuron	128	67	<0,1	56	71	<0,1	33	75	<0,1	92,4	64	<0,1	36,7	70	0,1
Pyroxsulam	99	68	<0,1	63	66	<0,1									<0,1
Sulfosulfuron	97	69	<0,1	32	73	<0,1	132	60	<0,1	91,6	65	<0,1			<0,1
Aminopyralid	85	70	<0,1	8	79	<0,1									<0,1
Propoxycarbazone	69	71	<0,1	38	72	<0,1	118	64	<0,1						0,2
Penoxsulam	65	72	<0,1	58	70	<0,1									<0,1
Prosulfuron	64	73	<0,1	161	54	<0,1	10	78	<0,1	8,1	78	<0,1	18,8	73	0,1
Iodosulfuron	59	74	<0,1	68	65	<0,1	99	65	<0,1	94,9	63	<0,1			
Fenoxaprop-p	52	75	<0,1	2	86	<0,1	138	59	<0,1	187,5	57	<0,1	305,7	58	
Carbetamid	40	76	<0,1				647	45	0,1	958,3	40	0,1	3477,5	30	
Isoxaben	35	77	<0,1	28	75	<0,1	52	70	<0,1	40,6	73	<0,1	68,7	65	<0,1
Amidosulfuron	30	78	<0,1	59	69	<0,1	184	55	<0,1	201,9	56	<0,1	361,9	54	<0,1
Imazamox	28	79	<0,1												
Clethodim	23	80	<0,1	76	64	<0,1	151	58	<0,1	212,3	54	<0,1			

		2014			2009			2003			2001			1998	/99
Herbizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Tepraloxydim	22	81	<0,1	8	81	<0,1	3	82	<0,1						
Mesosulfuron	22	82	<0,1	8	80	<0,1	4	81	<0,1						0,2
Dimefuron	20	83	<0,1				323	52	<0,1	479,5	50	0,1	1738,8	39	
Triasulfuron	17	84	<0,1	4	83	<0,1	32	76	<0,1	8,6	77	<0,1	4,7	78	<0,1
Clodinafop-Propagyl	12	85	<0,1	9	78	<0,1	45	72	<0,1	78,4	66	<0,1	1112,8	42	<0,1
Sulcotrione	6	86	<0,1	173	53	<0,1	731	43	0,1	2134,8	32	0,3	2945,5	35	0,1
Metosulam	5	87	<0,1	9	77	<0,1	36	73	<0,1	57,8	71	<0,1	136,3	62	
Flazasulfuron	5	88	<0,1	1	87	<0,1									0,6
Imazosulfuron	4	89	<0,1	3	85	<0,1									
Pyraflufen	2	90	<0,1	6	82	<0,1									
Metobromuron	0,25	91	<0,1				945	40	0,1	677,5	42	0,1	3293,4	31	
Fluazifop				1732	20	0,4									0,4
Dimethenamid				277	47	0,1									0,1
Linuron				250	49	0,1	84	67	<0,1						0,1
Cinidon-ethyl				22	76	<0,1	535	49	0,1	622,3	44	0,1	576	47	<0,1
Flurochloridon				4	84	<0,1	128	62	<0,1	150,1	60	<0,1	451,4	50	1,5
Metolachlor							31019	7	3,7	23520,3	7	2,9	18113	9	<0,1
Trifluralin							4039	23	0,5	2030	33	0,2	8001,6	20	
Diuron							226	53	<0,1	505	47	0,1	623,1	45	
Amitrol							184	56	<0,1	108	61	<0,1	210,7	61	
Paraquat							90	66	<0,1	64,9	67	<0,1	41	69	
Cloquintocet-mexyl							9	79	<0,1	15,5	76	<0,1	83,2	64	
Fluoroglycofen							2	83	<0,1	27,9	75	<0,1	65,7	66	
Eisen-III-sulfat							2	85	<0,1						
Quinoclamin							1	86	<0,1	28,8	74	<0,1			
Terbutryn										503,4	48	0,1	4007,3	26	
Dichlobenil										6,2	79	<0,1	55,9	67	
EPTC													328,5	56	<0,1

		2014			2009			2003			2001			1998	/99
Herbizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Cyanamid													322	57	<0,1
Isoxaflutole													45,8	68	<0,1
Sethoxydim													26,6	71	<0,1
Triallat													7,2	75	<0,1
Propham													6,2	77	<0,1
Simazine													3,3	79	<0,1

Anlage 3 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Fungizide (Wirkstoffe) - Ränge und Anteile im Wirkbereich

		2014			2009			2003			2001			1998/	'99
Fungizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Tebuconazol	38170	1	16,8	10622	2	10,4	24658	2	10,6	28441	2	10,9	21062	2	9,1
Mancozeb	25117	2	11,1	14760	1	14,4	47444	1	20,3	32166	1	12,3	42524	1	18,4
Prochloraz	17228	3	7,6	4032	8	3,9	2463	21	1,1	9858	8	3,8	12132	5	5,2
Fenpropimorph	15284	4	6,7	8330	3	8,1	16352	4	7	23091	3	8,8	14530	3	6,3
Chlorthalonil	14695	5	6,5	6915	4	6,8	2270	24	1	5829	14	2,2	3402	18	1,5
Prothioconazol	14430	6	6,4	3510	11	3,4	1624	30	0,7						
Epoxiconazol	13329	7	5,9	4352	6	4,3	6160	10	2,6	10722	7	4,1	7010	10	3
Thiophanat-methyl	6643	8	2,9	389	32	0,4	649	37	0,3	4113	20	1,6	759	40	0,3
Spiroxamine	6470	9	2,9	4320	7	4,2	10429	7	4,5	8349	9	3,2	7167	9	3,1
Propamocarb	5944	10	2,6	3545	10	3,5	3297	16	1,4	5999	13	2,3	4520	17	2
Isopyrazam	5157	11	2,3												
Propiconazol	4345	12	1,9	2774	13	2,7	8024	8	3,4	8201	10	3,1	6892	12	3
Boscalid	4334	13	1,9	4615	5	4,5	5811	11	2,5						
Azoxystrobin	4320	14	1,9	3502	12	3,4	19954	3	8,5	13790	6	5,3	9293	8	4
Difenoconazol	3916	15	1,7	740	28	0,7	2049	28	0,9	789	39	0,3	800	39	0,3
Bixafen	3785	16	1,7												
Fenpropidin	3686	17	1,6	3759	9	3,7	11113	5	4,8	14936	5	5,7	12811	4	5,5
Fluxapyroxad	3228	18	1,4												
Pyraclostrobin	3148	19	1,4	1293	20	1,3	2039	29	0,9						
Picoxystrobin	3065	20	1,4	190	41	0,2	1394	32	0,6						
Metrafenone	2948	21	1,3	1104	22	1,1									
Schwefel	2710	22	1,2	2398	14	2,3	10769	6	4,6	18888	4	7,2	10641	6	4,6
Metconazol	2516	23	1,1	2085	16	2	2766	18	1,2	2732	25	1	1013	35	0,4
Cyprodinil	2332	24	1	657	30	0,6	2396	23	1	4927	15	1,9	2574	20	1,1

		2014			2009			2003			2001			1998/	99
Fungizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Dimoxystrobin	2230	25	1	1683	18	1,6									
Fluazinam	2049	26	0,9	842	25	0,8	3496	15	1,5	2166	28	0,8	1475	28	0,6
Triadimenol	1528	27	0,7	950	24	0,9	856	34	0,4	1513	32	0,6	1078	33	0,5
Metiram	1420	28	0,6	1143	21	1,1	6177	9	2,6	1127	35	0,4	2391	22	1
Fluoxastrobin	1212	29	0,5	679	29	0,7									
Fluopyram	1154	30	0,5												
Cyproconazol	968	31	0,4	816	27	0,8	57	56	<0,1	2277	27	0,9	1792	26	0,8
Dimethomorph	918	32	0,4	1646	19	1,6	2188	25	0,9	1222	33	0,5	1292	30	0,6
Proquinazid	765	33	0,3	93	50	0,1									
Cyazofamid	732	34	0,3	409	31	0,4	226	52	0,1						
Mandipropamid	650	35	0,3	235	39	0,2									
Cymoxanil	566	36	0,2	190	42	0,2	547	42	0,2	427	43	0,2	594	42	0,3
Tolclofos-methyl	548	37	0,2	367	35	0,4	1049	33	0,4	567	40	0,2	876	37	0,4
Fluopicolide	450	38	0,2	377	34	0,4									
Captan	415	39	0,2	104	48	0,1	2095	27	0,9	851	38	0,3	1700	27	0,7
Fosetyl	394	40	0,2	2122	15	2,1	2157	26	0,9	2462	26	0,9	1314	29	0,6
Pyrimethanil	392	41	0,2	142	46	0,1	641	39	0,3	261	51	0,1	517	45	0,2
Cyflufenamid	339	42	0,1	24	57	<0,1									
Metalaxyl-M	319	43	0,1	268	38	0,3	579	40	0,2	348	49	0,1	354	48	0,2
Dithianon	270	44	0,1	91	51	0,1	25	61	<0,1	909	36	0,3	2124	25	0,9
Trifloxystrobin	251	45	0,1	1039	23	1	2765	19	1,2	2909	23	1,1			
Kresoxim-methyl	234	46	0,1	1975	17	1,9	2862	17	1,2	6663	11	2,5	5103	16	2,2
Kupferhydroxid	232	47	0,1	158	45	0,2	5432	12	2,3	1689	30	0,6	2573	21	1,1
Fluquinconazol	197	48	0,1	273	37	0,3	566	41	0,2	3233	21	1,2	140	53	0,1
Ametoctradin	196	49	0,1												
Famoxadone	177	50	0,1	182	44	0,2	537	43	0,2	495	41	0,2			
Pencycuron	174	51	0,1	104	49	0,1	395	47	0,2	386	46	0,1	529	44	0,2
Flutolanil	168	52	0,1												

		2014			2009			2003			2001			1998/	99
Fungizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Maneb	154	53	0,1	366	36	0,4	3823	13	1,6	4624	17	1,8	9995	7	4,3
Dodin	118	54	0,1												
Fludioxonil	96	55	<0,1	120	47	0,1	502	44	0,2	464	42	0,2	192	51	0,1
Silthiofam	83	56	<0,1	4	61	<0,1	7	66	<0,1	95	55	<0,1			
Triazoxide	76	57	<0,1	57	55	0,1				20	66	<0,1			
Iprodion	65	58	<0,1	201	40	0,2	442	46	0,2	2891	24	1,1	2817	19	1,2
Zoxamide	58	59	<0,1	88	52	0,1	296	50	0,1						
Triticonazol	46	60	<0,1	78	53	0,1	2	69	<0,1	31	63	<0,1	21	62	<0,1
Benthiavalicarb	28	61	<0,1	16	58	<0,1									
Imazalil	23	62	<0,1	1	66	<0,1	12	64	<0,1	66	57	<0,1	171	52	0,1
Fuberidazol	20	63	<0,1	1	65	<0,1	11	65	<0,1	49	59	<0,1	28	61	<0,1
Fenhexamid	19	64	<0,1	69	54	0,1	370	48	0,2	394	45	0,2	305	50	0,1
Flusilazol	19	65	<0,1	832	26	0,8	1403	31	0,6	1997	29	0,8	2171	24	0,9
Benalaxyl-M	18	66	<0,1												
Folpet	18	67	<0,1	24	56	<0,1	772	36	0,3	155	53	0,1			
Quinoxyfen	16	68	<0,1	11	59	<0,1	444	45	0,2	1679	31	0,6	908	36	0,4
Myclobutanil	13	69	<0,1	5	60	<0,1	279	51	0,1	68	56	<0,1	70	55	<0,1
Amisulbrom	12	70	<0,1												
Valifenalate	10	71	<0,1												
Penconazol	9	72	<0,1	2	62	<0,1	34	59	<0,1	9	68	<0,1	18	63	<0,1
Coniothyrium minitans	5	73	<0,1	2	64	<0,1	103	55	<0,1	40	62	<0,1			
Fenamidone	2	74	<0,1				42	58	<0,1						
Iprovalicarb	1	75	<0,1												
Carbendazim				380	33	0,4	825	35	0,4	3054	22	1,2	5654	14	2,4
Kupferoxychlorid				188	43	0,2	3504	14	1,5	4233	19	1,6	6950	11	3
Metalaxyl				2,3	63	<0,1	107	54	<0,1	26	65	<0,1	477	46	0,2
Carboxin							2510	20	1,1	4435	18	1,7	5621	15	2,4

		2014			2009			2003			2001			1998/	99
Fungizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Tolyfluanid							2445	22	1	1128	34	0,4	4	68	<0,1
Vinclozolin							649	38	0,3	4671	16	1,8	1048	34	0,5
Propineb							336	49	0,1	259	52	0,1	1287	31	0,6
Bitertanol							177	53	0,1	45	61	<0,1	62	57	<0,1
Flutriafol							45	57	<0,1	29	64	<0,1	2	70	<0,1
Thiram							26	60	<0,1	116	54	<0,1	359	47	0,2
Benomyl							25	62	<0,1	409	44	0,2	552	43	0,2
Guazatin							15	63	<0,1	365	47	0,1	352	49	0,2
Fenarimol							3,29	67	<0,1	48	60	<0,1	32	60	<0,1
Dichlofluanid							2	68	<0,1	333	50	0,1	6192	13	2,7
Lecithin							0,97	70	<0,1						
Kupferoctanoat							0,45	71	<0,1						
Fenpiclonil										6120	12	2,3	62	56	<0,1
Fentin-hydroxid										870	37	0,3	1106	32	0,5
Pyrazophos										363	48	0,1	2331	23	1
Triforine										61	58	<0,1	827	38	0,4
Diethofencarb										12	67	<0,1	4	67	<0,1
Fenbuconazol										1	69	<0,1	96	54	<0,1
Bromuconazol													684	41	0,3
Fenfuram													35	58	<0,1
Tridemorph													34	59	<0,1
Fenbuconazole													17	64	<0,1
Oxadixyl													10	65	<0,1
Anilazine													9,6	66	<0,1
Procymidone													2,1	69	<0,1
Pyrifenox													0,6	71	<0,1
Triadimefon													0,3	72	<0,1

Anlage 4 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Insektizide (Wirkstoffe) - Ränge und Anteile im Wirkbereich

		2014			2009			2003			2001			1998/99)
Insektizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Dimethoat	6214	1	29,9	868	3	9,5	16757	1	65,2	10640	1	39,4	7650	1	36,1
Thiacloprid	4721	2	22,7	2833	1	31,2	122	14	0,5						
Etofenprox	2859	3	13,8	510	6	5,6									
Pymetrozin	1001	4	4,8	3,5	27	<0,1	47	21	0,2	45	26	0,2	70	21	0,3
Alpha-Cypermethrin	898	5	4,3	260	10	2,9	1207	5	4,7	900	4	3,3	792	5	3,7
lambda-Cyhalothrin	896	6	4,3	410	8	4,5	1241	4	4,8	446	11	1,7	207	15	1
tau-Fluvalinat	879	7	4,2	292	9	3,2				0,7	47	<0,1	327	12	1,5
Pirimicarb	527	8	2,5	529	5	5,8	1510	2	5,9	1888	3	7	1560	3	7,4
beta-Cyfluthrin, Cyfluthrin	410	9	2	146	13	1,6	0,5	42	<0,1	322	13	1,2	138	17	0,7
Paraffinöle	405	11	2												
Cypermethrin	401	12	1,9				17	25	0,1	452	10	1,7	366	11	1,7
Acetamiprid	316	13	1,5	2,4	29	<0,1									
Indoxacarb	307	14	1,5	2,6	28	<0,1	9,1	29	<0,1	2,3	39	<0,1			
zeta-Cypermethrin	267	15	1,3	43	18	0,5	0,1	45	<0,1						
Esfenvalerat	233	16	1,1	187	12	2,1	273	9	1,1	41	27	0,2	11	32	0,1
Pirimiphos-methyl	154	17	0,7	638	4	7	332	8	1,3	827	6	3,1	572	9	2,7
Deltamethrin	85	18	0,4	87	14	1	120	15	0,5	21	31	0,1	789	6	3,7
Clothianidin	47	19	0,2	42	20	0,5									
gamma-Cyhalothrin	32	20	0,2												
Methoxyfenozide	30	21	0,1	3,8	26	<0,1	139	13	0,5						
Abamectin	15	22	0,1	1,0	32	<0,1	2,1	35	<0,1	0,9	44	<0,1	0,5	42	<0,1
Chlorantraniliprole	13	23	0,1	11	23	0,1									
Fenpyroximat	13	24	0,1	46	17	0,5	38	22	0,1	21	30	0,1	3,1	39	<0,1
Flonicamid	10	25	<0,1												
Hexythiazox	9	26	<0,1	43	19	0,5	14	26	0,1	0,8	45	<0,1	4,2	37	<0,1

		2014			2009			2003			2001			1998/99)
Insektizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Thiametoxam	8	27	<0,1	8,8	24	0,1									
Bacillus thuringiensis	7	28	<0,1	0,7	33	<0,1	5,1	30	<0,1	37	28	0,1	36	23	0,2
Metaflumizone	4	29	<0,1	35	22	0,4									
Acequinocyl	4	30	<0,1	1,5	31	<0,1									
Fipronil	3	31	<0,1												
Bifenazate	3	32	<0,1												
Imidacloprid	2	33	<0,1	73	15	0,8	263	10	1	49	24	0,2	186	16	0,9
Cyromazine	2	34	<0,1												
Adoxophyes orana GV	2	35	<0,1												
Fenoxycarb	1	36	<0,1	6,0	25	0,1	38	23	0,1	117	15	0,4	30	26	0,1
Spirotetramat	1	37	<0,1												
Spirodiclofen	1	38	<0,1	1,9	30	<0,1									
Tebufenpyrad	1	39	<0,1				13	27	<0,1	18	32	0,1	9,6	33	<0,1
Azadirachtin	0,4	40	<0,1	0,0	37	<0,1	2,1	36	<0,1	2,1	40	<0,1			
Pyrethrin	0,3	41	<0,1	0,1	36	<0,1	4,3	32	<0,1						
Spinosad	0,2	42	<0,1				1,1	40	<0,1						
Chlorpyrifos-methyl				1202	2	13,2									
Chlorpyrifos				469	7	5,2	1,8	37	<0,1						
Bifenthrin				231	11	2,5									
Mineralöle				66	16	0,7	893	6	3,5	6881	2	25,5	4069	2	19,2
Rapsöl				41	21	0,5	165	11	0,6	889	5	3,3	561	10	2,7
Milbemectin				0,1	34	<0,1									
Dichlorvos				0,1	35	<0,1	2,9	34	<0,1	52	23	0,2	51	22	0,2
Methamidophos							1430	3	5,6	367	12	1,4	1479	4	7
Oxydemeton-methyl							520	7	2	636	8	2,4	719	7	3,4
Tebufenozid							142	12	0,6	106	17	0,4	71	20	0,3
Chlorfenvinphos							100	16	0,4	83	19	0,3	31	24	0,1
Parathion							78	17	0,3	808	7	3	609	8	2,9

		2014			2009			2003			2001			1998/99	
Insektizider Wirkstoff	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Methidathion							75	18	0,3	24	29	0,1	0,8	41	<0,1
Parathion-methyl							47	20	0,2	205	14	0,8	85	19	0,4
Benfuracarb							23	24	0,1	607	9	2,2	246	14	1,2
Kali-Seife							12	28	<0,1						
Carbofuran							5,0	31	<0,1	3	37	<0,1	17	29	0,1
Phoxim							3,8	33	<0,1	10	34	<0,1	13	30	0,1
Fenazaquin							1,2	38	<0,1	1,8	41	<0,1	4,6	36	<0,1
Buprofezin							1,1	39	<0,1	1,1	43	<0,1	2,6	40	<0,1
Azamethiphos							0,7	41	<0,1						
Methomyl							0,3	43	<0,1						
Teflubenzuron							0,2	44	<0,1				0,2	44	<0,1
Permethrin							0,0	46	<0,1	3,5	36	<0,1	9,3	34	<0,1
Tetramethrin							0,0	46	<0,1						
Propoxur										108	16	0,4	31	25	0,1
Fenthion										106	18	0,4	13	31	0,1
Carbosulfan										69	20	0,3			
Bendiocarb										68	21	0,3			
Fenvalerat										55	22	0,2	26	27	0,1
Thiodicarb										48	25	0,2			
Clofentezin										18	33	0,1	19	28	0,1
Amitraz										8	35	<0,1	9	35	<0,1
Sulfotep										3	37	<0,1	92	18	0,4
Diflubenzuron										1,4	42	<0,1	261	13	1,2
Terbufos										0,8	45	<0,1	0,2	44	<0,1
Azocyclotin													3,3	38	<0,1
Fenpropathrin													0,4	43	<0,1

Anlage 5 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten Wachstumsregulatoren (Wirkstoffe) - Ränge und Anteile im Wirkbereich

		2014			2009			2003			2001			1998/	'99
Wachstumsregulator (Wirkstoff)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)	Absatz kg	Rang WB	Anteil WB (%)
Chlormequat	62224	1	64,1	26482	1	67,7	114786	1	81,5	141010	1	74,5	94340	1	72,3
Mepiquat	13033	2	13,4	4917	2	12,6									
Ethephon	11531	3	11,9	4133	3	10,6	20185	2	14,3	42682	2	22,5	32412	2	24,8
Trinexapac-ethyl	8116	4	8,4	2825	4	7,2	5709	3	4,1	5532	3	2,9	3667	3	2,8
Prohexadion	1196	5	1,2	703	5	1,8	3	6	<0,1						
Paclobutrazol	865	6	0,9												
Maleinsäurehydrazid	126	7	0,1												
Chlorpropham	16	8	<0,1	45	6	0,1	76	4	0,1	57	4	<0,1	40	4	<0,1
6-Benzyladenin	1	9	<0,1												
Naphthyl-Acetamid (NAD)							3	5	<0,1						
Flurprimidol							0,01	7	<0,1						

Anlage 6 Auflistung der in den Jahren 2014, 2009, 2003, 2001 und 1998/99 im Land Brandenburg in Verkehr gebrachten sonstigen Wirkstoffe - Anteile im Wirkbereich

		2014		2009		2003		2001		1998/99	
Wirkstoff	Wirkbereich (WB)	Absatz kg	Anteil WB								
(Z)-9-Dodecen-1-yl acetate	AT			1,4	49,4						
(E,Z)-7,9-Dodecadien-1-yl acetate	AT			1,3	42,9						
(E,E)-8,10-Dodecadien-1-ol	AT			0,2	7,7						
Aluminiumkaliumsulfat	BA	36	100								
Benzoesäure	BA			0,9	50						
Streptomycin	BA			0,9	50						
Methiocarb	IN, MO	39	100	2,8	100	498,66	100	100,4	100	92,9	100
Metaldehyd	МО	2467	99,9	297	100	84,84	94,3	1148,8	100	190,6	100
Eisen-III-phosphat	МО	3	0,1			5,11	5,7				
Dazomet	NE			1274	100	2502,6	100	4074,2	100	1223,2	100
Zinkphosphid	RO	92	98,9	0,7	46,2	6,21	3,1	15,2	34,4	4,9	8,1
Calciumphosphid	RO	1	0,9	0,2	12,1	8,63	4,3	13,7	31	2,8	4,6
Coumatetralyl	RO	0,10	0,1	0,010	0,7	0,18	0,1				
Brodifacoum	RO	0,01	<0,1	0,004	0,3	0,04	<0,1				
Flocoumafen	RO	0,01	<0,1	0,006	0,4	0,04	<0,1				
Sulfachinoxalin	RO	0,01	<0,1	0,0002	<0,1	0,34	0,2	0,07	0,2	0,1	0,2
Difenacoum	RO	0,002	<0,1	0,002	0,1	0,06	<0,1				
Difethialon	RO	0,002	<0,1	0,001	<0,1	0,01	<0,1				
Aluminiumphosphid	RO			0,6	37,5	12,88	6,4	14,8	33,5	52,5	86,8
Chlorphacinon	RO			0,040	2,7	0,03	<0,1	0,43	1	0,1	0,2
Calciumcarbid	RO					172	85,8				
Sulfonamide	RO					0,05	<0,1				
Warfarin	RO					0,03	<0,1			0,1	0,2
Cholecalciferol	RO					0,02	<0,1				
Dehydrocholesterol	RO					0,02	<0,1				